Skip to main content
Log in

Nanoscale Barrier Layers to Enable the Use of Gallium-Based Thermal Interface Materials with Aluminum

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Performance of thermal interface materials (TIMs), such as thermal pastes and mats, hinders the advance of integrated circuit (IC) devices. Current state-of-the-art TIMs suffer from low thermal conductivity, thick cross sections, and poor long-term performance. Gallium (Ga) and gallium-based alloys and amalgamations, in liquid and solid form, have demonstrated up to three times greater thermal conductivity than conventional TIMs, but rapidly alloy with and destroy aluminum (Al) components, which are commonly found in IC devices. In this work, we investigate the use of thin-film barrier layers on Al to prevent Ga alloying and characterize their performance through accelerated Ga exposure experiments and scanning electron microscopy. It is found that 100-nm-thick layers of the common passivation materials niobium and 304 stainless steel do not sufficiently prohibit Ga migration, but a 100 nm layer of titanium (Ti) does. No alloying is evident in Ti-coated Al samples after exposure to a liquid Ga alloy droplet at 300 °C for 168 h, 250 thermal cycles from room temperature to 150 °C with 30-min dwell, or 50 thermal cycles from room temperature to 300 °C with 2-min dwell. The results present a clear and direct path to the use of Ga and Ga alloys as TIMs through the addition of a thin inexpensive barrier layer on Al components and may enable future IC device technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

TIMs:

Thermal interface materials

IC:

Integrated circuit

Ga:

Gallium

Al:

Aluminum

Ti:

Titanium

Nb:

Niobium

PVD:

Physical vapor deposition

304SS:

304 stainless steel

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive spectroscopy

CPU:

Central processing unit

References

  1. R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proc. IEEE, 2006, 94(8), p 1571–1586

    Article  CAS  Google Scholar 

  2. F. Sarvar, D.C. Whalley, and P.P. Conway, Thermal Interface Materials—A Review of the State of the Art, in 2006 1st Electronic Systemintegration Technology Conference, vol. 2 (IEEE, 2006), pp. 1292–1302

  3. S. Kalpakjian, Manufacturing Engineering and Technology, Pearson Education India, Bengaluru, 2001

    Google Scholar 

  4. J. Due and A.J. Robinson, Reliability of Thermal Interface Materials: A Review, Appl. Therm. Eng., 2013, 50(1), p 455–463

    Article  CAS  Google Scholar 

  5. C.I. Chen, C.Y. Ni, H.Y. Pan, C.M. Chang, and D.S. Liu, Practical Evaluation for Long-Term Stability of Thermal Interface Material, Exp. Tech., 2009, 33(1), p 28–32

    Article  CAS  Google Scholar 

  6. D.T. Clark, E.P. Ramsay, A.E. Murphy, D.A. Smith, R. Thompson, R.A.R. Young, J.D. Cormack, C. Zhu, S. Finney, and J. Fletcher, High Temperature Silicon Carbide CMOS Integrated Circuits, in Materials Science Forum, vol. 679 (Trans Tech Publications Ltd, 2011), pp. 726–729

  7. S. Stagon, A. Knapp, P. Elliott, and H. Huang, Metallic Glue for Ambient Environments Making Strides, Adv. Mater. Process., 2016, 174(1), p 22–25

    Google Scholar 

  8. T. Liu, P. Sen, and C.-J. Kim, Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices, J. Microelectromech. Syst., 2011, 21(2), p 443–450

    Article  Google Scholar 

  9. J. Liu, M.O. Olorunyomi, X. Lu, W.X. Wang, T. Aronsson, and D. Shangguan, New Nano-thermal Interface Material for Heat Removal in Electronics Packaging, in 2006 1st Electronic Systemintegration Technology Conference, vol. 1 (IEEE, 2006), pp. 1–6

  10. A. Bar-Cohen, K. Matin, and S. Narumanchi, Nanothermal Interface Materials: Technology Review and Recent Results. J. Electron. Packag. 2015, 137(4), p 040803-1–040803-17

    Article  Google Scholar 

  11. J. Froemel, M. Baum, M. Wiemer, F. Roscher, M. Haubold, C. Jia, and T. Gessner, Investigations of Thermocompression Bonding with Thin Metal Layers, In 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2011), pp. 990–993

  12. S.-M. Lee, S.-M. Sim, Y.-W. Chung, Y.-K. Jang, and H.-K. Cho, Fracture Strength Measurement of Silicon Chips, Jpn. J. Appl. Phys., 1997, 36(6R), p 3374

    Article  CAS  Google Scholar 

  13. Y. Gao and J. Liu, Gallium-Based Thermal Interface Material with High Compliance and Wettability, Appl. Phys. A, 2012, 107(3), p 701–708

    Article  CAS  Google Scholar 

  14. L.J. Briggs, Gallium: Thermal Conductivity; Supercooling; Negative Pressure, J. Chem. Phys., 1957, 26(4), p 784–786

    Article  CAS  Google Scholar 

  15. V.V. VyY Prokhorenko, M.A.Pokrasin Roshchupkin, S.V. Prokhorenko, and V.V. Kotov, Liquid Gallium: Potential Uses as a Heat-Transfer Agent, High Temp., 2000, 38(6), p 954–968

    Article  Google Scholar 

  16. Y. Gao, X. Wang, J. Liu, and Q. Fang, Investigation on the Optimized Binary and Ternary Gallium Alloy as Thermal Interface Materials. J. Electron. Packag. 2017, 139(1), p 011002-1–011002-8

    Article  Google Scholar 

  17. C.K. Roy, S. Bhavnani, M.C. Hamilton, R. Wayne Johnson, J.L. Nguyen, R.W. Knight, and D.K. Harris, Investigation into the Application of Low Melting Temperature Alloys as Wet Thermal Interface Materials, Int. J. Heat Mass Transf., 2015, 85, p 996–1002

    Article  CAS  Google Scholar 

  18. Y.-G. Deng and J. Liu, Corrosion Development Between Liquid Gallium and Four Typical Metal Substrates Used in Chip Cooling Device, Appl. Phys. A, 2009, 95(3), p 907–915

    Article  CAS  Google Scholar 

  19. M. Rajagopalan, M.A. Bhatia, M.A. Tschopp, D.J. Srolovitz, and K.N. Solanki, Atomic-Scale Analysis of Liquid-Gallium Embrittlement of Aluminum Grain Boundaries, Acta Mater., 2014, 73, p 312–325

    Article  CAS  Google Scholar 

  20. J.W. Diggle, T.C. Downie, and C.W. Goulding, Anodic Oxide Films on Aluminum, Chem. Rev., 1969, 69(3), p 365–405

    Article  CAS  Google Scholar 

  21. M. Wittmer, Barrier Layers: Principles and Applications in Microelectronics, J. Vacuum Sci. Technol. A Vacuum Surf. Films, 1984, 2(2), p 273–280

    Article  CAS  Google Scholar 

  22. C.Y. Ting and M. Wittmer, The Use of Titanium-Based Contact Barrier Layers in Silicon Technology, Thin Solid Films, 1982, 96(4), p 327–345

    Article  CAS  Google Scholar 

  23. S.-Y. Jang, S.-m. Lee, and H.-K. Baik, Tantalum and Niobium as a Diffusion Barrier Between Copper and Silicon, J. Mater. Sci. Mater. Electron., 1996, 7(4), p 271–278

    Article  CAS  Google Scholar 

  24. D.R. Askeland, The Science and Engineering of Materials, Springer, Dordrecht, 2003. https://doi.org/10.1007/978-94-009-1842-9

    Book  Google Scholar 

  25. R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28(8), p 988–994

    Article  CAS  Google Scholar 

  26. Y.Y. Yan, N. Gao, and W. Barthlott, Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces, Adv. Colloid Interface Sci., 2011, 169(2), p 80–105

    Article  CAS  Google Scholar 

  27. A.B.D. Cassie and S. Baxter, Wettability of Porous Surfaces, Trans. Faraday Soc., 1944, 40, p 546–551

    Article  CAS  Google Scholar 

  28. V.A. Matveev, N.K. Pleshanov, A.P. Bulkin, and V.G. Syromyatnikov, The Study of the Oxidation of Thin Ti Films by Neutron Reflectometry, J. Phys. Conf. Ser., 2012, 340(1), p 012086

    Article  Google Scholar 

Download references

Acknowledgments

All authors acknowledge the support and expertise of UNF Material Science and Engineering Research Center and thank Dr. Paul Eason and Dr. Albina Mikhaylova for discussion and characterization guidance. SS also acknowledges the support of the UNF Presidential Faculty Leader Award.

Author information

Authors and Affiliations

Authors

Contributions

SS, GB, and JN collaborated to develop the concept and experimental protocol. SS and NB did the experiments and characterization. All authors contributed to the analysis of characterization results. All authors participated in the preparation of the manuscript. Funding Sources

Corresponding author

Correspondence to Stephen Stagon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stagon, S., Blaser, N., Bevill, G. et al. Nanoscale Barrier Layers to Enable the Use of Gallium-Based Thermal Interface Materials with Aluminum. J. of Materi Eng and Perform 29, 5132–5138 (2020). https://doi.org/10.1007/s11665-020-05007-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05007-1

Keywords

Navigation