Skip to main content

Advertisement

Log in

In Vitro Corrosion Behavior and Cytotoxicity of Polycaprolactone–Akermanite-Coated Friction-Welded Commercially Pure Ti/AZ31 for Orthopedic Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study deals with the corrosion and bioactivity behavior of biodegradable friction-welded CP-Ti/AZ31 joints. The investigations were carried out on the bare, PCL-coated and PCL–akermanite (AKT)-coated joints immersed in simulated body fluid. The samples were subjected to polarization and impedance corrosion tests, weight loss and pH monitoring and cytotoxicity investigations as well as cell adhesion test. The results of corrosion tests and weight loss measurements indicated that whereas the bare alloy shows the highest corrosion rate through 7 days (15.945 mm/y), the PCL–AKT-coated sample presented significantly improved results, even when the soaking period was prolonged to 30 days. The PCL–AKT-coated sample also showed the best biocompatibility, as the cell viability was measured to be 97.52%. The Ca/P ratio was also measured to be about 1.64 for PCL–AKT-coated sample, indicating favorable osteogenic behavior. The results of alizarin red cell staining and absorption spectrum as well as alkaline phosphatase activity confirmed superior osteogenic behavior of the PCL–AKT-coated sample. It was found that the CP-Ti/AZ31 samples coated with PCL–AKT obtained suitable corrosion resistance and cellular response, thus presenting a good potential to be used in orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, and P.K. Chu, Design of Magnesium Alloys with Controllable Degradation for Biomedical Implants: From Bulk to Surface, Acta Biomater., 2016, 45, p 2–30

    CAS  Google Scholar 

  2. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Lindenberg, C.J. Wirth, and H. Windhagen, In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 17, p 3557–3563

    Google Scholar 

  3. M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In Vitro Degradation, Antibacterial Activity and Cytotoxicity of Mg-3Zn-xAg Nanocomposites Synthesized by Mechanical Alloying for Implant Applications, J. Mater. Eng. Perform., 2019, 28, p 1441–1455

    CAS  Google Scholar 

  4. H.R. Bakhsheshi-Rad, E. Hamzah, S. Farahany, and M. Staiger, The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8Mn-xCa Alloys, J. Mater. Eng. Perform., 2015, 24(2), p 598–608

    CAS  Google Scholar 

  5. L. Xu, G. Yu, E. Zhang, F. Pan, and K. Yang, In Vivo Corrosion Behavior of Mg-Mn-Zn Alloy for Bone Implant Application, Biomed. Mater. Res. A, 2007, 83, p 703–711

    Google Scholar 

  6. C. Janning, E. Willbold, C. Vogt, J. Nellesen, A. Meyer-Lindenberg, H. Windhagen, F. Thorey, and F. Witte, Magnesium Hydroxide Temporarily Enhancing Osteoblast Activity and Decreasing the Osteoclast Number in Periimplant Bone Remodeling, Acta Biomater., 2010, 6, p 1861–1868

    CAS  Google Scholar 

  7. F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2010, 6, p 1680–1692

    CAS  Google Scholar 

  8. A.M. Khorasani, M. Goldberg, E.H. Doeven, and G. Littlefair, Titanium in Biomedical Applications Properties and Fabrication: A Review, Biomater. Tissue Eng., 2015, 5, p 593–619

    Google Scholar 

  9. M. Balasubramanian, R. Kumar, and S. Gopinath, Multi-Objective Optimisation of Friction Welding Parameters in Joining Titanium Alloy and Stainless Steel with a Novel Interlayer Geometry, Adv. Mater. Process. Technol., 2019, 6, p 25–39

    Google Scholar 

  10. M. Singh, C.E. Smith, R. Asthana, and A.L. Gyekenyesi, Active Metal Brazing of Graphite Foam-to-Titanium Joints Made with SiC-Coated Foam, Eur. Ceram. Soc., 2019, 39, p 1–9

    CAS  Google Scholar 

  11. M. Singh, R. Asthana, and T.P. Shpargel, Brazing of Ceramic-Matrix Composites to Ti and Hastealloy Using Ni Base Metallic Glass Interlayers, Mater. Sci. Eng. A, 2008, 498, p 19–30

    Google Scholar 

  12. M. Singh, G.N. Morscher, T.P. Shpargel, and R. Asthana, Active Metal Brazing of Titanium to High-Conductivity Carbon-Based Sandwich Structure, Mater. Sci. Eng. A, 2008, 498, p 31–36

    Google Scholar 

  13. G.N. Morscher, M. Singh, T. Shpargel, and R. Asthana, A Simple Test to Determine the Effectiveness of Different Braze Compositions for Joining Ti-Tubes to C/C Composite Plates, Mater. Sci. Eng. A, 2006, 418, p 19–24

    Google Scholar 

  14. T. Ozaki, Y. Hasegawa, H. Tsuda, S. Mori, M.C. Halbig, M. Singh, and R. Asthana, TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers, in Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials III, 2017, vol 37, p 49–55

  15. M. Singh, T. Matsunaga, H.T. Lin, R. Asthana, and T. Ishikawa, Microstructure and Mechanical Properties of Joints in Sintered SiC Fiber-Bonded Ceramics Brazed with Ag-Cu-Ti Alloy, Mater. Sci. Eng. A, 2012, 557, p 69–76

    CAS  Google Scholar 

  16. M.C. Halbig, R. Asthana, and M. Singh, Diffusion Bonding of SiC fibeR-Bonded Ceramics using Ti/Mo and Ti/Cu Interlayers, Ceram. Int., 2015, 41, p 2140–2149

    CAS  Google Scholar 

  17. M. Singh and R. Asthana, Characterization of Brazed Joints of CAC Composite to Cu-Clad-Molybdenum, Compos. Sci. Technol., 2008, 68, p 3010–3019

    CAS  Google Scholar 

  18. M.C. Halbig, B.P. Coddington, R. Asthana, and M. Singh, Characterization of Silicon Carbide Joints Fabricated using SiC Particulate-Reinforced Ag-Cu-Ti Alloys, Ceram. Int., 2013, 39, p 4151–4162

    CAS  Google Scholar 

  19. A. Lakshminarayanan, R. Saranarayanan, V.K. Srinivas, and B. Venkatraman, Characteristics of Friction Welded AZ31B Magnesium–Commercial Pure Titanium Dissimilar Joints, Magn. Alloys, 2015, 3(3), p 315–321

    CAS  Google Scholar 

  20. W. Li, A. Vairis, M. Preuss, and T. Ma, Linear and Rotary Friction Welding Review, Int. Mater. Rev., 2016, 61(2), p 1–30

    Google Scholar 

  21. P. Rombaut, W. De Waele, and K. Faes, Friction welding of steel to ceramic, Sustain Constr Des., 2011, 2(3), p 448–457

  22. M.M. Attallah, M. Preuss, C. Boonchareon, A. Steuwer, J.E. Daniels, D.J. Hughes, C. Dungey, and G.J. Baxter, Microstructural and Residual Stress Development Due to Inertia Friction Welding in Ti-6246, Metall. Mater. Trans. A, 2012, 9, p 3149–3161

    Google Scholar 

  23. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State Mater. Sci., 2008, 12, p 63–72

    CAS  Google Scholar 

  24. T.S.N.S. Narayanan, I.S. Park, and M.H. Lee, Strategies to Improve the Corrosion Resistance of Microarc Oxidation (MAO) Coated Magnesium Alloys for Degradable Implants: Prospects and Challenges, Prog. Mater. Sci., 2014, 60, p 1–71

    Google Scholar 

  25. A. Zomorodian, M.P. Garcia, T. Moura e Silva, J.C.S. Fernandes, M.H. Fernandes, and M.F. Montemor, Biofunctional Composite Coating Architectures Based on Polycaprolactone and Nanohydroxyapatite for Controlled Corrosion Activity and Enhanced Biocompatibility of Magnesium AZ31 Alloy, Mater. Sci. Eng. C, 2015, 48, p 434–443

    CAS  Google Scholar 

  26. Y. Ding, C. Wen, P. Hodgson, and Y. Li, Effects of Alloying Elements on the Corrosion Behavior and Biocompatibility of Biodegradable Magnesium Alloys: A Review, Mater. Chem. B, 2014, 2, p 1912–1933

    CAS  Google Scholar 

  27. Y. Sun, B. Zhang, Y. Wang, L. Geng, and X. Jiao, Preparation and Characterization of a New Biomedical Mg-Zn-Ca Alloy, Mater. Des., 2012, 34, p 58–64

    Google Scholar 

  28. W. Zhang, M. Li, Q. Chen, W. Hu, W. Zhang, and W. Xin, Effects of Sr and Sn on Microstructure and Corrosion Resistance of Mg-Zr-Ca Magnesium Alloy for Biomedical Applications, Mater. Des., 2012, 39, p 379–383

    CAS  Google Scholar 

  29. H.R. Bakhsheshi-Rad, E. Hamzah, M. Medraj et al., Effect of Heat Treatment on the Microstructure and Corrosion Behaviour of Mg-Zn Alloys, Mater. Corros., 2014, 65, p 999–1006

    CAS  Google Scholar 

  30. J.R. Smith and D.A. Lamprou, Polymer Coatings for Biomedical Applications: A Review, Surf. Eng. Coat., 2014, 92, p 9–19

    CAS  Google Scholar 

  31. S. Abela and F. Czerwinski, Ed., Protective Coatings for Magnesium Alloys, InTech, Rijeka, 2011

    Google Scholar 

  32. D.B. Prabhu, P. Gopalakrishnan, and K.R. Ravi, Coatings on Implants: Study on Similarities and Differences Between the PCL Coatings for Mg Based Lab Coupons and Final Components, Mater. Des., 2017, 135, p 397–410

    CAS  Google Scholar 

  33. S. Ehtemam-Haghighi, K.G. Prashanth, H. Attar, A.K. Chaubey, G.H. Cao, and L.C. Zhang, Evaluation of Mechanical and Wear Properties of Ti-xNb-7Fe Alloys Designed for Biomedical Applications, Mater. Des., 2016, 111, p 592–599

    CAS  Google Scholar 

  34. A.K. Nasution and H. Hermawan, Degradable Biomaterials for Temporary Medical Implants, Biomaterials and Medical Devices, Springer, Berlin, 2016, p 127–160

    Google Scholar 

  35. M. Vert, Degradable and Bioresorbable Polymers in Surgery and in Pharmacology :Beliefs and Facts, Mater. Sci.: Mater. Med., 2009, 20, p 437–446

    CAS  Google Scholar 

  36. Y. Chen, Y. Song, S. Zhang, J. Li, C. Zhao, and X. Zhang, Interaction Between a High Purity Magnesium Surface and PCL and PLA Coatings During Dynamic Degradation, Biomed. Mater., 2011, 6, p 1–8

    Google Scholar 

  37. X.N. Gu, Y.F. Zheng, Q.X. Lan, Y. Cheng, Z.X. Zhang, T.F. Xi, and D.Y. Zhang, Surface Modification of an Mg-1Ca Alloy to Slow Down Its Biocorrosion by Chitosan, Biomed. Mater., 2009, 4, p 1–8

    Google Scholar 

  38. C. Wu, Z. Wen, C. Dai, Y. Lu, and F. Yang, Fabrication of Calcium Phosphate/Chitosan Coatings on AZ91D Magnesium Alloy with a Novel Method, Surf. Coat. Technol., 2010, 204, p 3336–3374

    CAS  Google Scholar 

  39. B. Li and T. Webster, Orthopedic Biomaterials Advances and Applications, Springer, New York, 2017

    Google Scholar 

  40. L.Y. Li, L.Y. Cui, R.C. Zeng, S.Q. Li, X.B. Chen, Y. Zheng, and M.B. Kannan, Advances in Functionalized Polymer Coatings on Biodegradable Magnesium Alloys: A Review, Acta Biomater., 2018, 79, p 23–36

    CAS  Google Scholar 

  41. N. Siddiqui, S. Asawa, B. Birru, R. Baadhe, and S. Rao, PCL-based composite scaffold matrices for tissue engineering applications, Mol. Biotechnol., 2018, 60(7), p 506–532

    CAS  Google Scholar 

  42. M.A. Woodruff and D.W. Hutmacher, The Return of a Forgotten Polymer-Polycaprolactone in the 21st Century, Prog. Polym. Sci., 2010, 35, p 1217–1256

    CAS  Google Scholar 

  43. H.M. Wong, P.K. Chu, F.K.L. Leung, K.M.C. Cheung, K.D.K. Luk, and K.W.K. Yeung, Engineered Polycaprolactone-Magnesium Hybrid Biodegradable Porous Scaffold for Bone Tissue Engineering, Mater. Int., 2014, 24, p 561–567

    CAS  Google Scholar 

  44. H.R. Bakhsheshi-Rad, A.F. Ismail, M. Aziz, M. Akbari, Z. Hadisi, S.M. Khoshnava, E. Pagan, and X. Chen, Co-Incorporation of Graphene Oxide/Silver Nanoparticle into Poly-l-Lactic Acid Fibrous: A Route Toward the Development of Cytocompatible and Antibacterial Coating Layer on Magnesium Implants, Mater. Sci. Eng. C, 2020, 111, p 110812

    CAS  Google Scholar 

  45. A. Liu, M. Sun, X. Yang, C. Ma, Y. Liu, X. Yang, S. Yan, and Z. Gou, Three-Dimensional Printing Akermanite Porous Scaffolds for Load-Bearing Bone Defect Repair: An Investigation of Osteogenic Capability and Mechanical Evolution, Biomater. Appl., 2016, 31, p 650–660

    CAS  Google Scholar 

  46. K. Marzban, S.M. Rabiee, E. Zabihi, and S. Bagherifard, Nanostructured Akermanite Glass–Ceramic Coating on Ti6Al4V for Orthopedic Applications, Appl. Biomater. Funct. Mater., 2018, 17, p 1–8

    Google Scholar 

  47. L. Xia, Z. Yin, L. Mao, X. Wang, J. Liu, X. Jiang, Z. Zhang, K. Lin, J. Chang, and B. Fang, Akermanite Bioceramics Promoteosteogenesis, Angiogenesis and Suppress Osteoclastogenesis For osteoporotic Bone Regeneration, Sci. Rep., 2016, 6, p 1–17

    Google Scholar 

  48. American Society for Testing and Materials (ASTM), Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, 2017

    Google Scholar 

  49. A. Nasution, M.F. Ulum, M.R. Abdul Kadir, and H. Hermawan, Mechanical and Corrosion Properties of Partially Degradable Bone Screws made of Pure Iron and Stainless Steel 316L by Friction Welding, Sci. China Mater., 2018, 61, p 593–606

    CAS  Google Scholar 

  50. American Society for Testing and Materials (ASTM), Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, 2017

    Google Scholar 

  51. International Standard (ISO), Biological Evaluation of Medical Devices Part 5, Tests for In Vitro Cytotoxicity, ISI, Geneva, 2009

    Google Scholar 

  52. H.R. Bakhsheshi-Rad, E. Hamzah, S. Bagheriyan, M. Daroonparvar, M. Kasiri-Asgarani et al., Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25(9), p 3948–3959

    CAS  Google Scholar 

  53. H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, Z. Hadisi, M. Kashefian, and A. Najafinezhad, Novel Nanostructured Baghdadite-Vancomycin Scaffolds: In-Vitro Drug Release, Antibacterial Activity and Biocompatibility, Mater. Lett., 2017, 209, p 369–372

    CAS  Google Scholar 

  54. S. Liu, H. Liu, Z. Yin, K. Guo, and X. Gao, Cytotoxicity of Pristine C60 Fullerene on Baby Hamster Kidney Cells in Solution, Biomater. Nanobiotechnol, 2012, 3(3), p 385–390

    CAS  Google Scholar 

  55. H.R. Bakhsheshi-Rad, E. Hamzah, N. Abbasizadeh et al., Synthesis of Novel Nanostructured Bredigite–Amoxicillin Scaffolds for Bone Defect Treatment: Cytocompatibility and Antibacterial Activity, J. Sol-Gel. Sci. Technol., 2018, 86(1), p 83–93

    CAS  Google Scholar 

  56. F.Y. Cao, W.N. Yin, J.X. Fan, R.X. Zhuo, and X.Z. Zhang, A Novel Function of BMHP1 and cBMHP1 Peptides to Induce the Osteogenic Differentiation of Mesenchymal Stem Cells, Biomater. Sci., 2015, 3(2), p 345–351

    CAS  Google Scholar 

  57. S. Wang, Z. Gu, Z. Wang, X. Chen, L. Cao, L. Cai, Q. Li, J. Wei, J.W. Shin, and J. Su, Influences of Mesoporous Magnesium Calcium Silicate on Mineralization, Degradability, Cell Responses, Curcumin Release from Macro–Mesoporous Scaffolds of Gliadin Based Biocomposites, Sci. Rep., 2018, 8(1174), p 1–12

    Google Scholar 

  58. H.R. Bakhsheshi-Rad, M. Akbari, A.F. Ismail, M. Aziz et al., Coating Biodegradable Magnesium Alloys with Electrospun Poly-l-Lactic Acid-Akermanite-Doxycycline Nanofibers for Enhanced, Surf. Coat. Technol., 2019, 377, p 1–14

    Google Scholar 

  59. Y. Song, S. Zhang, J. Li, C. Zhao, and X. Zhang, Electrodeposition of Ca-P Coatings on Biodegradable Mg Alloy: In Vitro Biomineralization Behavior, Acta Biomater., 2010, 6, p 1742–1763

    Google Scholar 

  60. E. Ziyaei, M. Atapour, H. Edris, and A. Hakimizad, Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive, Mater. Eng. Perform., 2017, 26, p 3204–3215

    CAS  Google Scholar 

  61. P. Feng, P. Wu, C. Gao, Y. Yang, W. Guo, W. Yang, and C. Shuai, A Multimaterial Scaffold with Tunable Properties: Toward Bone Tissue Repair, Adv. Sci., 2018, 5(4), p 1–15

    CAS  Google Scholar 

  62. Y. Sasikumar, A. Madhan Kumar, R. Suresh Babu, P. Dhaiveegan, N. Al-Aqeeli, and A.L.F. Barros, Fabrication of Brushite Coating on AZ91D and AZ31 Alloys by Two-Step Chemical Treatment and Its Surface Protection in Simulated Body Fluid, Mater. Eng. Perform., 2019, 28, p 3803–3815

    CAS  Google Scholar 

  63. S. Arthanari and K.S. Shin, A Simple One Step Cerium Conversion Coating Formation on to Magnesium Alloy and Electrochemical Corrosion Performance, Surf. Coat. Technol., 2018, 349, p 757–772

    CAS  Google Scholar 

  64. V. Shkirskiy, A.D. King, O. Gharbi, P. Volovitch, J.R. Scully, K. Ogle, and N. Birbilis, Revisiting the Electrochemical Impedance Spectroscopy of Magnesium with Online Inductively Coupled Plasma Atomic Emission Spectroscopy, Chem. Phys. Chem., 2014, 16(3), p 536–539

    Google Scholar 

  65. M. Daroonparvar, M.A.M. Yajid, N.M. Yusof, H.R. Bakhsheshi-Rad et al., Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings, J. Mater. Eng. Perform., 2015, 24(7), p 2614–2627

    CAS  Google Scholar 

  66. H.R. Bakhsheshi-Rad, E. Hamzah, H.Y. Tok, M. Kasiri-Asgarani et al., Microstructure, In Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi Alloys, J. Mater. Eng. Perform., 2017, 26(2), p 653–666

    CAS  Google Scholar 

  67. S. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, et al., Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys, J. Mater. Eng. Perform., 2014, 23, p 3620–3629

  68. H.R. Bakhsheshi-Rad, E. Hamzah, M.R. Abdul-Kadir et al., The Mechanical Properties and Corrosion Behavior of Double Layered Nano Hydroxyapatite-Polymer Coating on Mg-Ca Alloy, Mater. Eng. Perform., 2015, 24, p 4010–4021

    CAS  Google Scholar 

  69. H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail et al., Synthesis and In Vitro Performance of Nanostructured Monticellite Coating on Magnesium Alloy for Biomedical Applications, J. Alloys Compd., 2019, 773, p 180–193

    CAS  Google Scholar 

  70. Y. Huang, X. Jin, X. Zhang, H. Sun, J. Tu, T. Tang, J. Chang, and K. Dai, In Vitro and In Vivo Evaluation of Akermanite Bioceramics for Bone Regeneration, Biomaterials, 2009, 30(28), p 5041–5048

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Kasiri-Asgarani or Hamid Reza Bakhsheshi-Rad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogheri, M.S., Kasiri-Asgarani, M., Bakhsheshi-Rad, H.R. et al. In Vitro Corrosion Behavior and Cytotoxicity of Polycaprolactone–Akermanite-Coated Friction-Welded Commercially Pure Ti/AZ31 for Orthopedic Applications. J. of Materi Eng and Perform 29, 6053–6065 (2020). https://doi.org/10.1007/s11665-020-04952-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04952-1

Keywords

Navigation