Skip to main content

Advertisement

Log in

Effect of Heterogeneous Lamellar Structure on Mechanical Properties and Electrochemical Corrosion Behavior of Al-Zn-Mg-Cu Alloy Subjected to High-Pressure Torsion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The heterogeneous lamellar structure composed of a mixture of coarse crystal layer and fine crystal layer can improve the mechanical properties and corrosion resistance of the metal. To obtain high-performance aluminum alloy with heterogeneous lamellar structure, high-pressure torsion experiments have been carried out at 360, 380 and 400 °C. The results of tensile test and electrochemical corrosion test show that the strength of the alloy increases from 682.46 to 781.03 MPa and the polarization resistance increases from 42.91 to 81.12 kΩ cm2 with the increase in deformation temperature. It can be inferred from optical microscopy and transmission electron microscope observations that the strength of the alloy increases with increasing temperature. This is because the geometrically necessary dislocations at the interface increase during the stretching process, which in turn increases the back stress. Moreover, the enhancement of chemical corrosion resistance can be attributed to the decreased volume fraction of grain boundaries, which results in an increase in the compactness of the passivation film in the corrosive environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.D. Robson, Analytical Electron Microscopy of Grain Boundary Segregation: Application to Al-Zn-Mg-Cu (7xxx) Alloys, Mater. Charact., 2019, 154, p 325–334

    Article  CAS  Google Scholar 

  2. M.X. Guo, X.K. Zhang, J.S. Zhang, and L.S. Zhuang, Effect of Zn Addition on the Precipitation Behaviors of Al–Mg–Si–Cu Alloys for Automotive Applications, J. Mater. Sci., 2016, 52, p 1–15

    Article  CAS  Google Scholar 

  3. Y. Liu, S. Liang, and D. Jiang, Influence of Repetitious Non-isothermal Aging on Microstructure and Strength of Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2016, 689, p 632–640

    Article  CAS  Google Scholar 

  4. X.Y. Peng, Q. Guo, X. Liang, Y. Deng, Y. Gu, G.F. Xu, and Z.M. Yin, Mechanical Properties, Corrosion Behavior and Microstructures of a Non-isothermal Ageing Treated Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng., A, 2017, 688, p 146–154

    Article  CAS  Google Scholar 

  5. Y. Deng, R. Ye, G. Xu, J.D. Yang, Q.L. Pan, B. Peng, X.W. Cao, Y.L. Duan, Y.J. Wang, L.Y. Lu, and Z.M. Yin, Corrosion Behaviour and Mechanism of New Aerospace Al–Zn–Mg Alloy Friction Stir Welded Joints and the Effects of Secondary Al3ScxZr1−x Nanoparticles, Corros. Sci., 2015, 90, p 359–374

    Article  CAS  Google Scholar 

  6. J.C.B. Bertoncello, S.M. Manhabosco, and L.F.P. Dick, Corrosion Study of the Friction Stir Lap Joint of AA7050-T76511 on AA2024-T3 Using the Scanning Vibrating Electrode Technique, Corros. Sci., 2015, 94, p 359–367

    Article  CAS  Google Scholar 

  7. S. Gollapudi, Grain Size Distribution Effects on the Corrosion Behaviour of Materials, Corros. Sci., 2012, 62, p 90–94

    Article  CAS  Google Scholar 

  8. G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang, Influence of Repetitious-RRA Treatment on the Strength and SCC Resistance of Al–Zn–Mg–Cu Alloy, Mater. Sci. Eng., A, 2011, 528, p 4014–4018

    Article  Google Scholar 

  9. W.M. Tian, S.M. Li, X. Chen, J.H. Liu, and M. Yu, Intergranular Corrosion of Spark Plasma Sintering Assembled Bimodal Grain Sized AA7075 Aluminum Alloys, Corros. Sci., 2016, 107, p 211–224

    Article  CAS  Google Scholar 

  10. P.P. Wu, A.Q. Tian, H.W. Duan, and Y. Zhou, Effect of Grain Size on Stress Corrosion Cracking Susceptibility of an Al-Zn-Mg Alloy, Fail. Anal. Prev., 2016, 11, p 6–12

    Google Scholar 

  11. L.P. Huang, K.H. Chen, and S. Li, Influence of Grain-boundary Pre-precipitation and Corrosion Characteristics of Inter-granular Phases on Corrosion Behaviors of an Al–Zn–Mg–Cu Alloy, Mater. Sci. Eng., B, 2012, 177, p 862–868

    Article  CAS  Google Scholar 

  12. L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, and J. Lu, Modeling Grain Size Dependent Optimal Twin Spacing for Achieving Ultimate High Strength and Related High Ductility in Nanotwinned Metals, Acta Mater., 2011, 59, p 5544–5557

    Article  CAS  Google Scholar 

  13. S. Yip, The Strongest Size, Nature, 1998, 391, p 532–533

    Article  CAS  Google Scholar 

  14. J. Schiøtz, F.D.D. Tolla, and K.W. Jacobsen, Softening of Nanocrystalline Metals at Very Small Grain Size, Nature, 1998, 391, p 561–563

    Article  Google Scholar 

  15. J.S. Li, Y. Cao, B. Gao, Y.S. Li, and Y.T. Zhu, Superior Strength and Ductility of 316L Stainless Steel with Heterogeneous Lamella Structure, J. Mater. Sci., 2018, 53, p 10442–10456

    Article  CAS  Google Scholar 

  16. R. Yuan, I.J. Beyerlein, and C.Z. Zhou, Homogenization of Plastic Deformation in Heterogeneous Lamella Structures, Mater. Res. Lett., 2017, 5, p 1–7

    Article  CAS  Google Scholar 

  17. X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, and Y.T. Zhu, Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility, Proced. Natl. Acad. Sci. U.S.A., 2015, 112, p 14501–14505

    Article  CAS  Google Scholar 

  18. X.L. Ma, C.X. Huang, J. Moering, and M. Ruppert, Mechanical Properties of Copper/Bronze Laminates: Role of Interfaces, Acta Mater., 2016, 116, p 43–52

    Article  CAS  Google Scholar 

  19. X. Wang, M.Y. Nie, C.T. Wang, S.C. Wang, and N. Gao, Microhardness and Corrosion Properties of Hypoeutectic Al–7Si Alloy Processed by High-Pressure Torsion, Mater. Des., 2015, 83, p 193–202

    Article  CAS  Google Scholar 

  20. K.S. Ghosh, N. Gao, and M.J. Starink, Characterisation of High Pressure Torsion Processed 7150 Al–Zn–Mg–Cu Alloy, Mater. Sci. Eng., A, 2012, 552, p 164–171

    Article  CAS  Google Scholar 

  21. X.X. Huang, G. Winther, N. Hansen, and T. Hebesberger, Microstructures of Nickel Deformed by High Pressure Torsion to High Strains, Mater. Sci. Forum, 2003, 426–432, p 2819–2824

    Article  Google Scholar 

  22. X.X. Huang, Characterization of Nanostructured Metals Produced by Plastic Deformation, J. Mater. Sci, 2007, 42, p 1577–1583

    Article  CAS  Google Scholar 

  23. X. Wu, M. Yang, F. Yuan et al., Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility, Proc. Natl. Acad. Sci., 2015, 112(47), p 14501

    Article  CAS  Google Scholar 

  24. X. Wu, P. Jiang, L. Chen et al., Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci., 2014, 111(20), p 7197–7201

    Article  CAS  Google Scholar 

  25. X. Wu, F. Yuan, M. Yang et al., Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility, Sci. Rep., 2015, 5, p 11728

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51575153) and (51705119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Huang, B., Yan, S. et al. Effect of Heterogeneous Lamellar Structure on Mechanical Properties and Electrochemical Corrosion Behavior of Al-Zn-Mg-Cu Alloy Subjected to High-Pressure Torsion. J. of Materi Eng and Perform 29, 4457–4462 (2020). https://doi.org/10.1007/s11665-020-04933-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04933-4

Keywords

Navigation