Skip to main content

Advertisement

Log in

Atomic Diffusion Behavior and Interface Waveform on the Laser Shock Welding of Aluminum to Nickel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Atomic diffusion behavior and interface waveform characteristics and formation mechanism during laser shock welding were investigated by using a molecular dynamics (MD) model and smooth particle hydrodynamics (SPH) modeling. The MD simulation showed that the diffusion coefficient of Al atom was larger than that of the Ni atom. Ni atom is easily diffused deeply into the Al lattice during impact welding. The SPH simulation showed that the wavelength and amplitude of the welding interface increased with loading speed, and SPH simulations at different loading speeds demonstrated that the movement direction of the Ni wave peak is the same as the welding direction, whereas the movement direction of the Al wave peak is opposite to the welding direction. The effective plastic strain and temperature were mainly distributed at the interface waveform. The shear stress of the composite and substrate foil is in opposite direction near the collision point, and the pressure near the collision point was as high as about 10 GPa. Energy-dispersive spectroscopy line scanning analysis showed the presence of a 2.5-μm-thick element diffusion layer at the wavy interface between Al and Ni, verifying the element diffusion between Al and Ni in the MD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Reference

  1. S. Hirose, T. Itoh, M. Makita, S. Fujii, S. Arai, K. Sasaki, and H. Saka, Defect structure of deformed Fe2A15 intermetallic compound, Intermetallics, 2003, 11(7), p 633–642

    Article  CAS  Google Scholar 

  2. M. Kimura, A. Fuji, Y. Konno, S. Itoh, and Y.C. Kim, Investigation of fracture for friction welded joint between pure nickel and pure aluminium with post-weld heat treatment, Mater. Des., 2014, 57, p 503–509

    Article  CAS  Google Scholar 

  3. K. Yu, H.Q. Xiong, Y.L. Dai, F. Teng, S.F. Fan, X.Y. Qiao, and L. Wen, Bonding process and application properties of an Al-Ni layer composite sheet for lithium-ion battery packaging, Rare Metal Mater. Eng., 2016, 45(5), p 1100–1105

    Article  Google Scholar 

  4. S. Kumai, M. Watanabe, and K.Y. Feng, Microstructure and joint strength of similar and dissimilar lap joints fabricated by several advanced solid-state welding methods, Mater. Sci. Forum, 2010, 654–656, p 596

    Article  Google Scholar 

  5. A. Stern, V. Shribman, A. Ben-Artzy, and M. Aizenshtein, Interface phenomena and bonding mechanism in magnetic pulse welding, J. Mater. Eng. Perform., 2014, 23(10), p 3449–3458

    Article  CAS  Google Scholar 

  6. S.Y. Yang and J.W. Bao, Microstructure and properties of 5083 Al/1060 Al/AZ31 composite plate fabricated by explosive welding, J. Mater. Eng. Perform., 2018, 27(3), p 1177–1184

    Article  CAS  Google Scholar 

  7. X. Wang, C.X. Gu, Y.Y. Zheng, Z.B. Shen, and H.X. Liu, Laser shock welding of aluminum/aluminum and aluminum/copper plates, Mater. Des., 2014, 56, p 26–30

    Article  CAS  Google Scholar 

  8. X. Wang, F. Li, T. Huang, X.J. Wang, and H.X. Liu, Experimental and numerical study on the laser shock welding of aluminum to stainless steel, Opt. Lasers Eng., 2019, 115, p 74–85

    Article  CAS  Google Scholar 

  9. S.D. Chen, F.J. Ke, M. Zhou, and Y.L. Bai, Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al, Acta Mater., 2007, 55(9), p 3169–3175

    Article  CAS  Google Scholar 

  10. S.P. Kiselev and V.I. Mali, Numerical and experimental modeling of jet formation during a high-velocity oblique impact of metal plates, Combust. Explos. Shock Waves, 2012, 48(2), p 214–225

    Article  Google Scholar 

  11. S.Y. Chen, Z.W. Wu, K.X. Liu, X.J. Li, N. Luo, and G.X. Lu, Atomic diffusion behavior in Cu-Al explosive welding process, J. Appl. Phys., 2013, 113(4), p 044901

    Article  Google Scholar 

  12. T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, R.S. Xie, and Y. Wei, Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate, Acta Metall. Sin. Engl. Lett., 2017, 30(10), p 983–991

    Article  CAS  Google Scholar 

  13. X. Wang, Y.Y. Zheng, H.X. Liu, Z.B. Shen, Y. Hu, W. Li, Y.Y. Gao, and C. Guo, Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method, Mater. Des., 2012, 35, p 210–219

    Article  CAS  Google Scholar 

  14. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 1995, 117(1), p 1–19

    Article  CAS  Google Scholar 

  15. S.D. Chen, A.K. Soh, and F.J. Ke, Molecular dynamics modeling of diffusion bonding, Scr. Mater., 2005, 52(11), p 1135–1140

    Article  CAS  Google Scholar 

  16. D.J. Evans and B.L. Holian, The Nose–Hoover thermostat, J. Chem. Phys., 1985, 83(8), p 4069

    Article  CAS  Google Scholar 

  17. Ansys 17.1 Autodyn User’s Manual

  18. A. Turgutlu, S.T.S. Al-Hassani, and M. Akyurt, Experimental investigation of deformation and jetting during impact spot welding, Int. J. Impact Eng., 1995, 16(5), p 789–799

    Article  Google Scholar 

  19. G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains high strain rates and high temperatures, in Proceedings of the 7th International Symposium on Ballistics (1983), pp. 541–547

  20. C.D. Wu, T.H. Fang, and C.C. Wu, Effect of temperature on welding of metallic nanowires investigated using molecular dynamics simulations, Mol. Simul., 2016, 42(2), p 131–137

    Article  CAS  Google Scholar 

  21. A.A.A. Mousavi, S.J. Burley, and S.T.S. Al-Hassani, Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives, Int. J. Impact Eng., 2005, 31(6), p 719–734

    Article  Google Scholar 

  22. X.Z. Guo, Y.N. Ma, K. Jin, H. Wang, J. Tao, and M.Y. Fan, Effect of stand-off distance on the microstructure and mechanical properties of Ni/Al/Ni laminates prepared by explosive bonding, J. Mater. Eng. Perform., 2017, 26(9), p 4235–4244

    Article  CAS  Google Scholar 

  23. H.X. Liu, S. Gao, Z. Yan, L.Y. Li, C. Li, X.Q. Sun, C.F. Sha, Z.B. Shen, Y. Ma, and X. Wang, Investigation on a novel laser impact spot welding, Metals, 2016, 6, p 8

    Google Scholar 

  24. X. Wang, M. Shao, H. Jin, H. Tang, and H.X. Liu, Laser impact welding of aluminum to brass, J. Mater. Process. Technol., 2019, 269, p 190–199

    Article  CAS  Google Scholar 

  25. N. Kahraman and B. Gülenç, Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process, J. Mater. Process. Technol., 2005, 169(1), p 67–71

    Article  CAS  Google Scholar 

  26. A. Nassiri and B. Kinsey, Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE), J. Manuf. Process., 2016, 24, p 376–381

    Article  Google Scholar 

  27. M. Gloc, M. Wachowski, T. Plocinski, and K.J. Kurzydlowski, Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3 N obtained by explosive welding, J. Alloys. Compd., 2016, 671, p 446–451

    Article  CAS  Google Scholar 

  28. A. Nassiri, G. Chini, A. Vivek, G. Daehn, and B. Kinsey, Arbitrary Lagrangian–Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact, Mater. Des., 2015, 88, p 345–358

    Article  CAS  Google Scholar 

  29. S.A.A. Akbari-Mousavi, L.M. Barrett, and S.T.S. Al-Hassani, Explosive welding of metal plates, J. Mater. Process. Technol., 2008, 202, p 224–239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51675241) and the college students’ practical innovation fund of Industry Center of Jiangsu University (No. ZXJG2018006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, X., Wang, X. et al. Atomic Diffusion Behavior and Interface Waveform on the Laser Shock Welding of Aluminum to Nickel. J. of Materi Eng and Perform 29, 1336–1345 (2020). https://doi.org/10.1007/s11665-020-04671-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04671-7

Keywords

Navigation