Skip to main content

Advertisement

Log in

Recovery Stress and Storage Modulus of Microwave-Induced Graphene-Reinforced Thermoresponsive Shape Memory Polyurethane Nanocomposites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A special class of smart material was developed using shape memory polyurethane (SMPU) elastomer and graphene nanoplatelets (GNPs) via melt-blending process using micro-compounder. The shape recovery of the developed composites was studied under microwave irradiation. The nanocomposites were developed having 0.2, 0.4, 0.6, and 0.8 phr GNPs in the SMPU matrix. The effects of GNP reinforcement on morphology, shape memory effects, and viscoelastic properties of the composites were investigated. The recovery stress of virgin SMPU increased with reinforcement and maximized on the incorporation of 0.6 phr GNPs. The deformation-induced shape memory creation process influenced significantly the recovery stress of composites as compared to virgin SMPU. The recovery stresses of SMPU at 50, 75, and 100% strain were 1.5, 1.7, and 1.9 MPa, whereas the values of GNP-SMPU composites were 3.2, 3.4, and 4.1 MPa corresponding to 0.6 phr GNP reinforcement. The value of storage modulus above the glass transition temperature of SMPU increased from 9.2 to 15.1 MPa on the addition of 0.6 phr GNPs. The peak of the damping factor, tan δ shifted toward higher temperatures with the increased GNP content. The morphological study confirms the uniform dispersion of GNPs in the SMPU matrix. The microwave-induced heating of 0.8 phr GNP composite shows 80% shape recovery in 60 s, which is faster than convectional heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.A.R. Hashmi, H.C. Prasad, R. Abishera, H.N. Bhargaw, and A. Naik, Improved Recovery Stress in Multi-walled-Carbon-Nanotubes Reinforced Polyurethane, Mater. Des., 2015, 67, p 492. https://doi.org/10.1016/j.matdes.2014.10.062

    Article  CAS  Google Scholar 

  2. W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao, and H. Purnawali, Shape Memory Materials, Mater. Today, 2010, 13, p 54. https://doi.org/10.1016/S1369-7021(10)70128-0

    Article  CAS  Google Scholar 

  3. Q. Meng and J. Hu, A Review of Shape Memory Polymer Composites and Blends, Compos. A Appl. Sci. Manuf., 2009, 40, p 1661–1672

    Article  Google Scholar 

  4. Y. Wu, J. Hu, C. Zhang, J. Han, Y. Wang, and B. Kumar, A Facile Approach to Fabricate a UV/Heat Dual-Responsive Triple Shape Memory Polymer, J. Mater. Chem. A, 2015, 3, p 97. https://doi.org/10.1039/c4ta04881d

    Article  CAS  Google Scholar 

  5. E. Pieczyska, M. Staszczak, M. Maj, H. Tobushi, S. Hayashi, Investigation of Thermal Effects Accompanying Tensile Deformation of Shape Memory Polymer PU-SMP, Meas. Autom. Monit., 2015, 61, p 203–205

    Google Scholar 

  6. T. Hisaaki, H. Hisashi, Y. Etsuko, and H. Shunichi, Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series, Smart Mater. Struct., 1996, 5, p 483

    Article  Google Scholar 

  7. M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, 3D Printing of Shape Memory Polymers for Flexible Electronic Devices, Adv. Mater., 2016, 28, p 4449. https://doi.org/10.1002/adma.201503132

    Article  CAS  Google Scholar 

  8. W. Wang, D. Liu, Y. Liu, J. Leng, and D. Bhattacharyya, Electrical Actuation Properties of Reduced Graphene Oxide Paper/Epoxy-Based Shape Memory Composites, Compos. Sci. Technol., 2015, 106, p 20

    Article  CAS  Google Scholar 

  9. X. Liu, H. Li, Q. Zeng et al., Electro-Active Shape Memory Composites Enhanced by Flexible Carbon Nanotube/Graphene Aerogels, J. Mater. Chem. A, 2015, 3, p 11641

    Article  CAS  Google Scholar 

  10. T. Liu, R. Huang, X. Qi, P. Dong, and Q. Fu, Facile Preparation of Rapidly Electro-Active Shape Memory Thermoplastic Polyurethane/Polylactide Blends Via Phase Morphology Control and Incorporation of Conductive Fillers, Polymer, 2017, 114, p 28

    Article  CAS  Google Scholar 

  11. F.-P. Du, E.-Z. Ye, and W. Yang et al., Electroactive Shape Memory Polymer Based on Optimized Multi-Walled Carbon Nanotubes/Polyvinyl Alcohol Nanocomposites, Compos. Part B Eng., 2015, 68, p 170

    Article  CAS  Google Scholar 

  12. A.M. Schmidt, Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles, Macromol. Rapid Commun., 2006, 27, p 1168

    Article  CAS  Google Scholar 

  13. R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, and A. Lendlein, Initiation of Shape-Memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers, Proc. Natl. Acad. Sci. USA, 2006, 103, p 3540

    Article  CAS  Google Scholar 

  14. B. Yang, W. Huang, C. Li, and L. Li, Effects of Moisture on the Thermomechanical Properties of a Polyurethane Shape Memory Polymer, Polymer, 2006, 47, p 1348

    Article  CAS  Google Scholar 

  15. S. Chen, J. Hu, C.-W. Yuen, and L. Chan, Novel Moisture-Sensitive Shape Memory Polyurethanes Containing Pyridine Moieties, Polymer, 2009, 50, p 4424

    Article  CAS  Google Scholar 

  16. X.J. Han, Z.Q. Dong, M.M. Fan et al., pH-Induced Shape-Memory Polymers, Macromol. Rapid Commun., 2012, 33, p 1055

    Article  CAS  Google Scholar 

  17. H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, and S. Zhou, Highly pH-Sensitive Polyurethane Exhibiting Shape Memory and Drug Release, Polym. Chem., 2014, 5, p 5168

    Article  CAS  Google Scholar 

  18. C.D. Eisenbach, Isomerization of Aromatic Azo Chromophores in Poly (Ethyl Acrylate) Networks and Photomechanical Effect, Polymer, 1980, 21, p 1175

    Article  CAS  Google Scholar 

  19. M.H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, Light-Driven Side-On Nematic Elastomer Actuators, Adv. Mater., 2003, 15, p 569

    Article  CAS  Google Scholar 

  20. H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, A New Opto-Mechanical Effect in Solids, Phys. Rev. Lett., 2001, 87, p 015501

    Article  CAS  Google Scholar 

  21. Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, Reconfigurable Photonic Crystals Enabled by Pressure-Responsive Shape-Memory Polymers, Nat. Commun., 2015, 6, p 7416

    Article  CAS  Google Scholar 

  22. Y.-Y. Xiao, X.-L. Gong, Y. Kang, Z.-C. Jiang, S. Zhang, and B.-J. Li, Light-, pH-and Thermal-Responsive Hydrogels with the Triple-Shape Memory Effect, Chem. Commun., 2016, 52, p 10609

    Article  CAS  Google Scholar 

  23. C. Liu, H. Qin, and P. Mather, Review of Progress in Shape-Memory Polymers, J. Mater. Chem., 2007, 17, p 1543

    Article  CAS  Google Scholar 

  24. J. Hu, Y. Zhu, H. Huang, and J. Lu, Recent Advances in Shape-Memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications. Prog. Polym. Sci., 2012, 37, p 1720

    Article  CAS  Google Scholar 

  25. I.A. Rousseau, Challenges of Shape Memory Polymers: A Review of the Progress Toward Overcoming SMP’s Limitations, Polym. Eng. Sci., 2008, 48, p 2075

    Article  CAS  Google Scholar 

  26. Y. Liu, K. Gall, M.L. Dunn, and P. McCluskey, Thermomechanics of Shape Memory Polymer Nanocomposites, Mech. Mater., 2004, 36, p 929

    Article  Google Scholar 

  27. K. Gall, M.L. Dunn, Y. Liu, D. Finch, M. Lake, and N.A. Munshi, Shape Memory Polymer Nanocomposites, Acta Mater., 2002, 50, p 5115

    Article  CAS  Google Scholar 

  28. F. Cao and S.C. Jana, Nanoclay-Tethered Shape Memory Polyurethane Nanocomposites, Polymer, 2007, 48, p 3790. https://doi.org/10.1016/j.polymer.2007.04.027

    Article  CAS  Google Scholar 

  29. C.A. Garcia Rosales, M.F. Garcia Duarte, H. Kim et al., 3D Printing of Shape Memory Polymer (SMP)/Carbon Black (CB) Nanocomposites with Electro-Responsive Toughness Enhancement, Mater. Res. Exp., 2018, 5, p 065704. https://doi.org/10.1088/2053-1591/aacd53

    Article  CAS  Google Scholar 

  30. A. Olalla, V. Sessini, E. Torres, and L. Peponi, Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, Elsevier, Amsterdam, 2016

    Google Scholar 

  31. S.M. Oh, K.M. Oh, T.D. Dao, H.M. H-i Lee, and B.K.Kim Jeong, The Modification of Graphene with Alcohols and Its Use in Shape Memory Polyurethane Composites, Polymer, 2013, 62, p 54. https://doi.org/10.1002/pi.4366

    Article  CAS  Google Scholar 

  32. L. Tan, L. Gan, J. Hu, Y. Zhu, and J. Han, Functional Shape Memory Composite Nanofibers with Graphene Oxide Filler, Compos. Part A: Appl. Sci. Manuf., 2015, 76, p 115. https://doi.org/10.1016/j.compositesa.2015.04.015

    Article  CAS  Google Scholar 

  33. F. Memarian, A. Fereidoon, and M. Ghorbanzadeh Ahangari, The Shape Memory, and The Mechanical and Thermal Properties of TPU/ABS/CNT: A Ternary Polymer Composite, RSC Adv., 2016, 6, p 101038. https://doi.org/10.1039/c6ra23087c

    Article  CAS  Google Scholar 

  34. D.I. Arun, K.S. Santhosh Kumar, B. Satheesh Kumar, P. Chakravarthy, M. Dona, and B. Santhosh, High Glass-Transition Polyurethane-Carbon Black Electro-Active Shape Memory Nanocomposite for Aerospace Systems, Mater. Sci. Technol., 2019, 35, p 596. https://doi.org/10.1080/02670836.2019.1575054

    Article  CAS  Google Scholar 

  35. H. Lu, Y. Liu, and J. Leng, Carbon Nanopaper Enabled Shape Memory Polymer Composites for Electrical Actuation and Multifunctionalization, Macromol. Mater. Eng., 2012, 297, p 1138. https://doi.org/10.1002/mame.201200235

    Article  CAS  Google Scholar 

  36. H. Lu, Y. Liu, J. Gou, L. Jinsong, and S. Du, Synergistic Effect of Carbon Nanofiber and Carbon Nanopaper on Shape Memory Polymer Composite, Appl. Phys. Lett., 2010, 96, p 084102. https://doi.org/10.1063/1.3323096

    Article  CAS  Google Scholar 

  37. S.K. Yadav and J.W. Cho, Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyurethane Nanocomposites, Appl. Surf. Sci., 2013, 266, p 360. https://doi.org/10.1016/j.apsusc.2012.12.028

    Article  CAS  Google Scholar 

  38. Y.C. Jung, J.H. Kim, T. Hayashi et al., Fabrication of Transparent, Tough, Conductive Shape-Memory Polyurethane Films by Incorporating a Small Amount of High-Quality Graphene, Macromol. Rapid Commun., 2012, 33, p 628

    Article  CAS  Google Scholar 

  39. H.J. Yoo, S.S. Mahapatra, and J.W. Cho, High-Speed Actuation and Mechanical Properties of Graphene-Incorporated Shape Memory Polyurethane Nanofibers, J. Phys. Chem. C, 2014, 118, p 10408. https://doi.org/10.1021/jp500709m

    Article  CAS  Google Scholar 

  40. H. Du, Y. Yu, G. Jiang, J. Zhang, and J. Bao, Microwave-Induced Shape-Memory Effect of Chemically Crosslinked Moist Poly(vinyl alcohol) Networks, Macromol. Chem. Phys., 2011, 212, p 1460. https://doi.org/10.1002/macp.201100149

    Article  CAS  Google Scholar 

  41. K. Yu, Y. Liu, and J. Leng, Shape Memory Polymer/CNT Composites and Their Microwave Induced Shape Memory Behaviors, RSC Adv., 2014, 4, p 2961. https://doi.org/10.1039/c3ra43258k

    Article  CAS  Google Scholar 

  42. F. Zhang, T. Zhou, Y. Liu, and J. Leng, Microwave Synthesis and Actuation of Shape Memory Polycaprolactone Foams with High Speed, Sci. Rep., 2015, 5, p 11152. https://doi.org/10.1038/srep11152

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (RKG) is highly thankful to CSIR for granting fellowship under which the present work was carried out. The authors are also very thankful to Dr. A. K. Srivastava for his constant encouragement to publish research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Gupta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Hashmi, S.A.R., Verma, S. et al. Recovery Stress and Storage Modulus of Microwave-Induced Graphene-Reinforced Thermoresponsive Shape Memory Polyurethane Nanocomposites. J. of Materi Eng and Perform 29, 205–214 (2020). https://doi.org/10.1007/s11665-020-04568-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04568-5

Keywords

Navigation