Skip to main content

Advertisement

Log in

Effect of Boron Addition on Creep Strain during Impression Creep of P91 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In an attempt to understand the effect of boron addition on creep deformation behavior under high stress and high temperature in martensitic P91 steel, impression creep tests were carried out on boron-free P91 (P91) and boron-added P91 (P91B) steels. The experimental program consisted of three steps, i.e., characterization of as-received steels by microhardness, optical microscopy (OM), transmission electron microscopy (TEM), electron backscattered diffraction (EBSD) and wavelength-dispersive spectroscopy (WDS); impression creep tests at 445 MPa and 625 °C on as-received steels; characterization at deformed plastic zones of impression-crept specimens by microhardness, OM, EBSD, TEM and WDS. Impression creep tests were run till a depth of penetration of 1.8 mm was achieved for both cases which ensured a sufficient plastic zone underneath indenter for subsequent microstructural investigations. Coarsening of M23C6 carbides was observed in P91 steel during high-temperature creep loading, which leads to extensive strain hardening in deformed plastic region, resulting in impaired creep performance. On the contrary, dynamic recrystallization in P91B steel results in formation of small strain-free grains during creep loading which are responsible for increased resistance of the material to shear stresses during an impression creep test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Wheeldon, J. Parkes, and D. Dillon, UltraGen: A Proposed Initiative by EPRI to Advance Deployment of Ultra Supercritical Pulverized Coal Power Plant Technology with Near Zero Emissions and CO2 Capture and Storage, in Proceedings of 5th International Conference on Advanced Materials Technology for Fossil Power Plants, 2007

  2. R.L. Klueh, Ferritic/Martensitic Steels for Advanced Nuclear Reactors, Trans. Indian Inst. Met., 2009, 62(2), p 81–87

    Article  CAS  Google Scholar 

  3. S.K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, Effect of Welding Process and Groove Angle on Type IV Cracking Behaviour of Weld Joints of a Ferritic Steel, Sci. Technol. Weld. Join., 2005, 10(2), p 149–157

    Article  CAS  Google Scholar 

  4. Y. Wang and L. Li, Microstructure Evolution of Fine Grained Heat Affected Zone in Type IV Failure of P91 welds, Weld. J, 2016, 95, p 27–36

    Google Scholar 

  5. J. Baral, J. Swaminathan, and R.N. Ghosh, Creep Behaviour of 9CrMoNbV (P91) Steel Having a Small Amount of Boron, Procedia Eng., 2013, 55, p 88–92

    Article  CAS  Google Scholar 

  6. F. Abe, M. Tabuchi, M. Kondo, and S. Tsukamoto, Suppression of Type IV Fracture and Improvement of Creep Strength of 9Cr Steel Welded Joints by Boron Addition, Int. J. Press. Vessels Pip., 2007, 84(1), p 44–52

    Article  CAS  Google Scholar 

  7. F. Abe, M. Tabuchi, S. Tsukamoto, and T. Shirane, Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels, Int. J. Press. Vessels Pip., 2010, 87(11), p 598–604

    Article  CAS  Google Scholar 

  8. M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, and F. Abe, Suppressing Type IV Failure via Modification of Heat Affected Zone Microstructures Using High Boron Content in 9Cr Heat Resistant Steel Welded Joints, Sci. Technol. Weld. Join., 2006, 11(2), p 216–223

    Article  CAS  Google Scholar 

  9. F. Yang and J.C. Li, Impression Test: A Review, Mater. Sci. Eng. R, 2013, 74(8), p 233–253

    Article  Google Scholar 

  10. J.C. Li, Impression Creep and Other Localized Tests, Mater. Sci. Eng. A, 2002, 322(1), p 23–42

    Article  Google Scholar 

  11. N.D. Vijayanand, V. Ganesan, K. Laha, and M.D. Mathew, Evaluation of Creep Deformation Behaviour of Different Microstuctural Zones of 316LN SS Weld Joint Using Impression Creep Testing Technique, Mater. Sci. Technol., 2014, 30(10), p 1223–1228

    Article  CAS  Google Scholar 

  12. N.D. Vijayanand, V. Ganesan, K. Laha, and M.D. Mathew, Evaluation of the Effect of Nitrogen on Creep Properties of 316LN Stainless Steel from Impression Creep Tests, Mater. Sci. Eng. A, 2012, 552, p 112–118

    Article  CAS  Google Scholar 

  13. M.D. Mathew and D. Vijayanand, Impression Creep Behaviour of 316LN Stainless Steel, J. Mater. Eng. Perform., 2013, 22(2), p 492–497

    Article  CAS  Google Scholar 

  14. T. Hasegawa, Y.R. Abe, Y. Tomita, N. Maruyama, and M. Sugiyama, Microstructural Evolution During Creep Test in 9Cr–2W–V–Ta Steels and 9Cr–1Mo–V–Nb Steels, ISIJ Int., 2001, 41(8), p 922–929

    Article  CAS  Google Scholar 

  15. C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, and A. Srivastava, Microstructure-Based Assessment of Creep Rupture Behaviour of Cast-Forged P91 Steel, Mater. Sci. Eng. A, 2017, 695, p 291–301

    Article  CAS  Google Scholar 

  16. K. Maruyama, K. Sawada, and J.I. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, ISIJ Int., 2001, 41(6), p 641–653

    Article  CAS  Google Scholar 

  17. Y.Z. Shen, S.H. Kim, C.H. Han, H.D. Cho, and W.S. Ryu, TEM Investigations of MN Nitride Phases in a 9% Chromium Ferritic/Martensitic Steel with Normalization Conditions for Nuclear Reactors, J. Nucl. Mater., 2009, 384(1), p 48–55

    Article  CAS  Google Scholar 

  18. Y.Z. Shen, S.H. Kim, C.H. Han, H.D. Cho, W.S. Ryu, and C.B. Lee, Vanadium Nitride Precipitate Phase in a 9% Chromium Steel for Nuclear Power Plant Applications, J. Nucl. Mater., 2008, 374(3), p 403–412

    Article  CAS  Google Scholar 

  19. Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han, and W.S. Ryu, Precipitate Phases of a Ferritic/Martensitic 9% Cr Steel for Nuclear Power Reactors, Nucl. Eng. Des., 2009, 239(4), p 648–654

    Article  CAS  Google Scholar 

  20. N.Z. Gutierrez, H. De Cicco, J. Marrero, C.A. Danón, and M.I. Luppo, Evolution of Precipitated Phases During Prolonged Tempering in a 9%Cr1%MoVNb Ferritic–Martensitic Steel: Influence on Creep Performance, Mater. Sci. Eng. A, 2011, 528(12), p 4019–4029

    Article  CAS  Google Scholar 

  21. F. Abe, M. Tabuchi, and S. Tsukamoto, Alloy Design of Martensitic 9Cr-Boron Steel for a USC Boiler at 650 °C—Beyond Grades 91, 92 and 122, in Energy Materials, Springer, Cham, 2014, p. 129–136

  22. H.Y. Yu and J.C.M. Li, Computer Simulation of Impression Creep by the Finite Element Method, J. Mater. Sci., 1977, 12(11), p 2214–2222

    Article  CAS  Google Scholar 

  23. T.H. Hyde, K.A. Yehia, and A.A. Becker, Application of the Reference Stress Method for Interpreting Impression Creep Test Data, Mater. High Temp., 1995, 13(3), p 133–138

    Article  CAS  Google Scholar 

  24. G. Nayyeri and R. Mahmudi, The Microstructure and Impression Creep Behaviour of Cast, Mg–5Sn–xCa Alloys, Mater. Sci. Eng. A, 2010, 527(7–8), p 2087–2098

    Article  CAS  Google Scholar 

  25. P.S. Godavarti and K.L. Murty, Creep Anisotropy of Zinc Using Impression Tests, J. Mater. Sci. Lett., 1987, 6(4), p 456–458

    Article  CAS  Google Scholar 

  26. L. Peng, F. Yang, J.F. Nie, and J.C.M. Li, Impression Creep of a Mg-8Zn-4Al-0.5Ca Alloy, Mater. Sci. Eng. A, 2005, 410, p 42–47

    Article  CAS  Google Scholar 

  27. D. Dorner, K. Röller, B. Skrotzki, B. Stöckhert, and G. Eggeler, Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing, Mater. Sci. Eng. A, 2003, 357(1–2), p 346–354

    Article  CAS  Google Scholar 

  28. D. Chiang and J.C.M. Li, Impression Creep of Lead, J. Mater. Res., 1994, 9(4), p 903–908

    Article  CAS  Google Scholar 

  29. S.N.G. Chu and J.C.M. Li, Impression Creep of β-Tin Single Crystals, Mater. Sci. Eng. A, 1979, 39(1), p 1–10

    Article  CAS  Google Scholar 

  30. S.N.G. Chu and J.C.M. Li, Impression Creep: A New Creep Test, J. Mater. Sci., 1977, 12(11), p 2200–2208

    Article  CAS  Google Scholar 

  31. J. Hald, Creep Strength and Ductility of 9 to 12% Chromium Steels, Mater. High Temp., 2004, 21(1), p 41–46

    Article  CAS  Google Scholar 

  32. D. Jandová and J. Kasl, Influence of Precipitation on Dislocation Substructure and Creep Properties of P91 Steel Weld Joints, Mater. High Temp., 2010, 27(2), p 135–140

    Article  CAS  Google Scholar 

  33. Y. Zhang, Changes in Microstructure and Mechanical Properties of P91 Weld Metal During Creep. PhD thesis, University of Nottingham, 2009, p. 145–150

  34. C.G. Panait, W. Bendick, A. Fuchsmann, A.F.G. Lorenzon, and J. Besson, Study of the Microstructure of the Grade 91 Steel After More Than 100,000 h of Creep Exposure at 600 °C, Int. J. Press. Vessels Pip., 2010, 87(6), p 326–335

    Article  CAS  Google Scholar 

  35. D.T. Erten, T.T. Nguyen, T.M. Jeong, and K.B. Yoon, Creep Deformation and Rupture Behaviour of Service Exposed P91 Weld and Base Steel Measured by Miniature Tensile Creep Testing, Mater. High Temp., 2017, 34(5–9), p 425–433

    Article  CAS  Google Scholar 

  36. F.H. Lege, ASM Hand Book, Metallography and Microstructures, Vol 9, American Society for Metals, Cleveland, 1984, p 605

    Google Scholar 

  37. I. Fedorova, A. Kostka, E. Tkachev, A. Belyakov, and R. Kaibyshev, Tempering Behavior of a Low Nitrogen Boron-Added 9% Cr Steel, Mater. Sci. Eng. A, 2016, 662, p 443–455

    Article  CAS  Google Scholar 

  38. K. Sawada, K. Kubo, and F. Abe, Creep Behaviour and Stability of MX Precipitates at High Temperature in 9Cr-0.5Mo-1.8W-V Nb Steel, Mater. Sci. Eng. A, 2001, 319, p 784–787

    Article  Google Scholar 

  39. B. Sonderegger, S. Mitsche, and H. Cerjak, Microstructural Analysis on a Creep Resistant Martensitic 9–12% Cr Steel Using the EBSD Method, Mater. Sci. Eng. A, 2008, 481, p 466–470

    Article  CAS  Google Scholar 

  40. B. Sonderegger, S. Mitsche, and H. Cerjak, Martensite Laths in Creep Resistant Martensitic 9–12% Cr Steels—Calculation and Measurement of Misorientations, Mater. Charact., 2007, 58(10), p 874–882

    Article  CAS  Google Scholar 

  41. G.E. Dieter, Mechanical Metallurgy, 2nd ed., McGraw-hill, Maidenhead, 1988, p 90–99

    Google Scholar 

  42. M. Akhtar, Metallurgical Characterisation of Simulated Heat Affected Zone in Boron Modified P91 Steel. Master’s Thesis, NIT, Warangal, 2017, p. 22–23. https://doi.org/10.13140/rg.2.2.12593.68967.

  43. G. Kumar and M.D. Mathew, Finite Element Analysis of Plastic Deformation During Impression Creep, J. Mater. Eng. Perform., 2015, 24(4), p 1741–1753

    Article  CAS  Google Scholar 

  44. ASTM, Standard Test Method for Microhardness of Materials, Annual Book of ASTM Standards, Part 14, 1999

  45. V. Sklenicka, K. Kucharova, M. Svobodova, P. Kral, M. Kvapilova, and J. Dvorak, The Effect of a Prior Short-Term Ageing on Mechanical and Creep Properties of P92 Steel, Mater. Charact., 2018, 136, p 388–397

    Article  CAS  Google Scholar 

  46. V. Naveena, P. Shankar, and M.D.Mathew Parameswaran, Impression Creep Deformation Behaviour of 316LN Stainless Steel, Mater. High Temp., 2015, 32(6), p 583–591

    Article  CAS  Google Scholar 

  47. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, and J.G. Thakre, Nano-size Particle Evolution During Heat Treatment of P91 Steel and Their Effect on Micro Hardness, Trans. Indian Inst. Met., 2017, p. 1–8

  48. K. Huang and R.E. Logé, A Review on Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Mr. M. Akhtar (Research Scholar, MMED, NIT, Warangal), Mr. Snehashish Tripathy (Scientist, CSIR - NML, Jamshedpur), Mr. Biraj Sahoo (Scientist, CSIR - NML, Jamshedpur), Dr. J. Swaminanthan (Sr. Principal Scientist, CSIR-NML, Jamshedpur), Director, NIT, Jalandhar, and Director, CSIR-NML, Jamshedpur, for their continuous support and motivation during the course of this research work. Authors acknowledge the aid from Board of Research in Nuclear Sciences (GAP-0260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajuria, A., Kumar, R. & Bedi, R. Effect of Boron Addition on Creep Strain during Impression Creep of P91 Steel. J. of Materi Eng and Perform 28, 4128–4142 (2019). https://doi.org/10.1007/s11665-019-04167-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04167-z

Keywords

Navigation