Skip to main content
Log in

Fabrication of Brushite Coating on AZ91D and AZ31 Alloys by Two-Step Chemical Treatment and Its Surface Protection in Simulated Body Fluid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A biocompatible dicalcium phosphate dihydrate (DCPD) brushite coating of flake-like crystals was developed on AZ91D and AZ31 magnesium (Mg) surfaces to control and slow down the rapid degradation rate of the substrates. The electrochemical behavior of the DCPD-coated substrates was examined in a simulated body fluid (SBF) with uncoated substrates as the control. Fabrication of the coating was achieved via chemical immersion technique by modifying the surfaces with Ca(NO3)2·4H2O and KH2PO4 in addition to heat treatment. The morphology of the DCPD coating is uniform and dense with a flake-like crystal structure. After in vitro tests, the DCPD coating would have exhibited excellent corrosion resistance with more biomineralization of the active calcium phosphate (CaP). Moreover, the DCPD coating induced CaP formation after immersion in the SBF, indicating excellent bioactivity upon increasing the coating. Hence, the two-step chemical treatment enhances the bioactivity of DCPD coatings on Mg alloys, making them better implant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 304, p 484–498

    Article  Google Scholar 

  2. A. Lambotte, L’utilisation du Magnesium Comme Materiel Perdu Dans L’osteosynthese, Bull. Mem. Soc. Nat. Chir., 1932, 28, p 1325–1334

    Google Scholar 

  3. G.L. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    Article  Google Scholar 

  4. C. Ying-liang, Q. Ting-wei, W. Hui-min, and Z. Zhao, Comparison of Corrosion Behaviors of AZ31, AZ91, AM60 and ZK60 Magnesium Alloys, Trans. Nonferrous Met. Soc. China, 2009, 19, p 517–524

    Article  Google Scholar 

  5. A. Abdal-hay, N.A.M. Barakat, and J.K. Lim, Hydroxyapatite-doped Poly(Lactic Acid) Porous Film Coating for Enhanced Bioactivity and Corrosion Behavior of AZ31Mg Alloy for Orthopedic Applications, Ceram. Int., 2013, 39, p 183–195

    Article  Google Scholar 

  6. D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, Effect of Various Additives on Morphology and Corrosion Behavior of Ceramic Coatings Developed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2012, 38, p 4607–4615

    Article  Google Scholar 

  7. S.V. Dorozhkin, Calcium Orthophosphate Coatings on Magnesium and Its Biodegradable Alloys, Acta Biomater., 2014, 10, p 2919–2934

    Article  Google Scholar 

  8. S. Shadanbaz and G.J. Dias, Calcium Phosphate Coatings on Magnesium Alloys for Biomedical Applications: A Review, Acta Biomater., 2012, 8, p 20–30

    Article  Google Scholar 

  9. R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova, Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review, Acta Biomater., 2014, 10, p 557–579

    Article  Google Scholar 

  10. S.R. Paital and N.B. Dahotre, Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies, Mater. Sci. Eng. Rep., 2009, 66, p 1–70

    Article  Google Scholar 

  11. Y. Chen and X. Miao, Effect of Fluorine Addition on the Corrosion Resistance of Hydroxyapatite Ceramics, Ceram. Int., 2004, 30, p 1961–1965

    Article  Google Scholar 

  12. M. Pan, X. Kong, Y. Cai, and J. Yao, Hydroxyapatite Coating on the Titanium Substrate Modulated by a Recombinant Collagen-Like Protein, Mater. Chem. Phys., 2011, 126, p 811–817

    Article  Google Scholar 

  13. J.E. Gray Munro and M. Strong, The Mechanism of Deposition of Calcium Phosphate Coatings from Solution onto Magnesium Alloy AZ31, J. Biomed. Mater. Res. A, 2009, 90, p 339–350

    Article  Google Scholar 

  14. D. Gopi, P.R. Bhalaji, S. Ramya, and L. Kavitha, Evaluation of Biodegradability of Surface Treated AZ91 Magnesium Alloy in SBF Solution, J. Ind. Eng. Chem., 2015, 23, p 218–227

    Article  Google Scholar 

  15. M. Tomozawa and S. Hiromoto, Microstructure of Hydroxyapatite- and Octacalcium Phosphate-Coatings Formed on Magnesium by a Hydrothermal Treatment at Various pH Values, Acta Mater., 2011, 59, p 355–363

    Article  Google Scholar 

  16. J. Liang, B.G. Guo, J. Tian, H.W. Liu, J.F. Zhou, W.M. Liu, and T. Xu, Effects of NaAlO2 on Structure and Corrosion Resistance of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Phosphate-KOH Electrolyte, Surf. Coat. Technol., 2005, 199, p 121–126

    Article  Google Scholar 

  17. C. Wen, S. Guan, L. Peng, C. Ren, X. Wang, and Z. Hu, Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications, Appl. Surf. Sci., 2009, 255, p 6433–6438

    Article  Google Scholar 

  18. L. Li, J. Gao, and Y. Wang, Evaluation of Cyto-toxicity and Corrosion Behavior of Alkali-Heat-Treated Magnesium in Simulated Body Fluid, Surf. Coat. Technol., 2004, 185, p 92–98

    Article  Google Scholar 

  19. Y. Zhu, G. Wu, Y. Hong Zhang, and Q. Zhao, Growth and Characterization of Mg(OH)2 Film on Magnesium Alloy AZ31, Appl. Surf. Sci., 2011, 257, p 6129–6137

    Article  Google Scholar 

  20. C. Lorenz, J.G. Brunner, P. Kollmannsberger, L. Jaafar, B. Fabry, and S. Virtanen, Effect of Surface Pre-treatments on Biocompatibility of Magnesium, Acta Biomater., 2009, 5, p 2783–2789

    Article  Google Scholar 

  21. H. Zhao, S. Cai, S. Niu, R. Zhang, X. Wu, G. Xu, and Z. Ding, The Influence of Alkali Pretreatments of AZ31 Magnesium Alloys on Bonding of Bioglass-Ceramic Coatings and Corrosion Resistance for Biomedical Applications, Ceram. Int., 2015, 41, p 4590–4600

    Article  Google Scholar 

  22. Y. Su, Y. Lu, Y. Su, J. Hu, J. Lian, and G. Li, Enhancing the Corrosion Resistance and Surface Bioactivity of a Calcium-Phosphate Coating on a Biodegradable AZ60 Magnesium Alloy via a Simple Fluorine Post-treatment Method, RSC Adv., 2015, 5, p 56001–56010

    Article  Google Scholar 

  23. L. Zhang, S. Li, H. Li, and L. Pei, Bioactive Surface Modification of Carbon/Carbon Composites with Multilayer SiC-SiC Nanowire-Si Doped Hydroxyapatite Coating, J. Alloys Compd., 2018, 740, p 109–117

    Article  Google Scholar 

  24. X. Zhao, X. Wang, H. Xin, L. Zhang, J. Yang, and G. Jiang, Controllable Preparation of SiC Coating Protecting Carbon Fiber from Oxidation Damage During Sintering Process and SiC Coated Carbon Fiber Reinforced Hydroxyapatite Composites, Appl. Surf. Sci., 2018, 450, p 265–273

    Article  Google Scholar 

  25. L. Zhang, L. Pei, H. Li, S. Li, S. Liu, and Y. Guo, Preparation and Characterization of Na and F Co-Doped Hydroxyapatite Coating Reinforced by Carbon Nanotubes and SiC Nanoparticles, Mater. Lett., 2018, 218, p 161–164

    Article  Google Scholar 

  26. Z. Leilei, L. Hejun, L. Kezhi, Z. Yulei, L. Shoujie, G. Qian, and L. Shaoxian, Micro-oxidation Treatment to Improve Bonding Strength of Sr and Na Co-substituted Hydroxyapatite Coatings for Carbon/Carbon Composites, Appl. Surf. Sci., 2016, 378, p 136–141

    Article  Google Scholar 

  27. S. Liu, H. Li, L. Zhang, L. Feng, and P. Yao, Strontium and Magnesium Substituted Dicalcium Phosphate Dehydrate Coating for Carbon/Carbon Composites Prepared by Pulsed Electrodeposition, Appl. Surf. Sci., 2015, 359, p 288–292

    Article  Google Scholar 

  28. Z. Leilei, L. Hejun, L. Kezhi, Z. Shouyang, F. Qiangang, Z. Yulei, L. Jinhua, and L. Wei, Preparation and Characterization of Carbon/SiC Nanowire/Na-Doped Carbonated Hydroxyapatite Multilayer Coating for Carbon/Carbon Composites, Appl. Surf. Sci., 2014, 313, p 85–92

    Article  Google Scholar 

  29. L. Zhang, L. Pei, H. Li, and F. Zhu, Design and Fabrication of Pyrolytic Carbon-SiC-Fluoridated Hydroxyapatite-Hydroxyapatite Multilayered Coating on Carbon Fibers, Appl. Surf. Sci., 2019, 473, p 571–577

    Article  Google Scholar 

  30. Y. Sasikumar and N. Rajendran, Influence of Surface Modification on the Apatite Formation and Corrosion Behavior of Ti and Ti-15Mo Alloy for Biomedical Applications, Mater. Chem. Phys., 2013, 138, p 114–123

    Article  Google Scholar 

  31. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27, p 2907–2915

    Article  Google Scholar 

  32. Y. Sasikumar, M.M. Solomon, L.O. Olasunkanmi, and E.E. Ebenso, Effect of Surface Treatment on the Bioactivity and Electrochemical Behavior of Magnesium Alloys in Simulated Body Fluid, Mater. Corros., 2017, 68, p 776–790

    Article  Google Scholar 

  33. Y. Wang, M. Wei, and J. Gao, Improve Corrosion Resistance of Magnesium in Simulated Body Fluid by Dicalcium Phosphate Dihydrate Coating, Mater. Sci. Eng. C, 2009, 29, p 1311–1316

    Article  Google Scholar 

  34. S.T. Jiang, J. Zhang, S.Z. Shun, and M.F. Chen, The Formation of FHA Coating on Biodegradable Mg-Zn-Zr Alloy using a Two-Step Chemical Treatment Method, Appl. Surf. Sci., 2016, 388, p 424–430

    Article  Google Scholar 

  35. M. Jamesh, S. Kumar, and T.S.N. Sankara Narayanan, Electrodeposition of Hydroxyapatite Coating on Magnesium for Biomedical Applications, J. Coat. Technol. Res., 2012, 9, p 495–502

    Article  Google Scholar 

  36. Y. Su, G. Li, and J.A. Lian, Chemical Conversion Hydroxyapatite Coating on AZ60 Magnesium Alloy and Its Electrochemical Corrosion Behaviour, Int. J. Electrochem. Sci., 2012, 7, p 11497–11511

    Google Scholar 

  37. B. Sridevi, J. Gérrard Eddy, and F. Derek, Growth of Flower-Like Brushite Structures on Magnesium Substrates and Their Subsequent Low Temperature Transformation to Hydroxyapatite, Am. J. Biomed. Eng., 2014, 4, p 79–87

    Google Scholar 

  38. J. Xu, I.S. Butler, and F.R.G. Denis, FT-Raman and High-Pressure Infrared Spectroscopic Studies of Dicalcium Phosphate Dihydrate (CaHPO4 2H2O) and Anhydrous Dicalcium Phosphate (CaHPO4), Spectrochim. Acta A, 1999, 55, p 2801–2809

    Article  Google Scholar 

  39. L. Xu, E. Zhang, and K. Yang, Phosphating Treatment and Corrosion Properties of Mg-Mn-Zn Alloy for Biomedical Application, J. Mater. Sci. Mater. Med., 2009, 20, p 859–867

    Article  Google Scholar 

  40. L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, In Vitro and In Vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magnesium Alloy, Biomaterials, 2008, 30, p 1512–1523

    Article  Google Scholar 

  41. A. Yanovska, V. Kuznetsov, A. Stanislavov, S. Danilchenko, and L. Sukhodub, Calcium–Phosphate Coatings Obtained Biomimetically on Magnesium Substrates Under Low Magnetic Field, Appl. Surf. Sci., 2012, 258, p 8577–8584

    Article  Google Scholar 

  42. L.L. Hench, Bioceramics, J. Am. Ceram. Soc., 1998, 81, p 1705–1728

    Article  Google Scholar 

  43. S.V. Dorozhkin, A Review on the Dissolution Models of Calcium Apatites, Prog. Cryst. Growth Charact., 2002, 44, p 45–61

    Article  Google Scholar 

  44. T.M. Mukhametkaliyev, M.A. Surmeneva, A. Vladescu, C.M. Cotruta, M. Braic, M. Dinu, M.D. Vranceanu, I. Pana, M. Muellere, and R.A. Surmenev, A Biodegradable AZ91 Magnesium Alloy Coated with a Thin Nanostructured Hydroxyapatite for Improving the Corrosion Resistance, Mater. Sci. Eng. C, 2017, 75, p 95–103

    Article  Google Scholar 

  45. A.M. Fekry and M.A. Ameer, Electrochemistry and Impedance Studies on Titanium and Magnesium Alloys in Ringer’s Solution, Int. J. Electrochem. Sci., 2011, 6, p 1342–1354

    Google Scholar 

  46. C.J. Pan, L. Pang, Y. Hou, Y.B. Lin, T. Gong, T. Liu, W. Ye, and H.Y. Ding, Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments, Appl. Sci., 2017, 7, p 33

    Article  Google Scholar 

  47. Y.J. Zhang, C.W. Yan, F.H. Wang, and W.F. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47, p 2816–2831

    Article  Google Scholar 

  48. R.G. Guan, I. Johnson, T. Cui, T. Zhao, Z.Y. Zhao, X. Li, and H. Liu, Electrodeposition of Hydroxyapatite Coating on Mg-4.0Zn-1.0Ca-0.6Zr Alloy and In Vitro Evaluation of Degradation, Hemolysis, and Cytotoxicity, J. Biomed. Mater. Res. A, 2012, 100A, p 999–1015

    Article  Google Scholar 

  49. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1986

    Google Scholar 

  50. E. Stansbury and R. Buchanan, Fundamentals of Electrochemical Corrosion, 1st ed., ASM International, Materials Park, 2000

    Google Scholar 

  51. G.L. Song, A. Atrens, D. St. John, X. Wu, and J. Nairn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39, p 1981–2004

    Article  Google Scholar 

  52. Y.R. Chu and C.S. Lin, Citrate Gel Conversion Coating on AZ31 Magnesium Alloys, Corros. Sci., 2014, 87, p 288–296

    Article  Google Scholar 

  53. M.C. Zhao, P. Schmutz, S. Brunner, M. Liu, G.L. Song, and A. Atrens, An Exploratory Study of the Corrosion of Mg Alloys During Interrupted Salt Spray Testing, Corros. Sci., 2009, 51, p 1277–1292

    Article  Google Scholar 

  54. T.R. Thomaz, C.R. Weber, T. Pelegrini, Jr., L.F.P. Dick, and G. Knörnschild, The Negative Difference Effect of Magnesium and of the AZ91 Alloy in Chloride and Stannate-Containing Solutions, Corros. Sci., 2010, 52, p 2235–2243

    Article  Google Scholar 

  55. A. Madhan Kumar, S. Fida Hassan, A.A. Sorour, M. Paramsothy, and M. Gupta, Electrochemical Corrosion and In Vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid, J. Mater. Eng. Perform., 2018, 27, p 3419–3428

    Article  Google Scholar 

  56. M. Kumar, H. Dasarathy, and C. Riley, Electrodeposition of Brushite Coatings and Their Transformation to Hydroxyapatite in Aqueous Solutions, J. Biomed. Mater. Res. A, 1999, 45, p 302–310

    Article  Google Scholar 

  57. C. Chen, S. Qiu, S. Qin, G. Yan, H. Zhao, and L. Wang, Anticorrosion Performance of Epoxy Coating Containing Reactive Poly(o-phenylenediamine) Nanoparticles, Int. J. Electrochem. Sci., 2017, 12, p 3417–3431

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful for the financial support received from Brazilian agencies, such as CAPES (BEX 5383/15-3), (PNPD-PhD scholarships) CNPq (304051/2014-4) and FAPERJ (E-26/110.087/2014, 13.577/2015 and/216.730/2015). Dr. Y. Sasikumar and Dr. R. Suresh Babu wish to acknowledge CAPES for financial assistance via the PNPD scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Madhan Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikumar, Y., Kumar, A.M., Suresh Babu, R. et al. Fabrication of Brushite Coating on AZ91D and AZ31 Alloys by Two-Step Chemical Treatment and Its Surface Protection in Simulated Body Fluid. J. of Materi Eng and Perform 28, 3803–3815 (2019). https://doi.org/10.1007/s11665-019-04143-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04143-7

Keywords

Navigation