Skip to main content
Log in

High-Temperature Low-Cycle Fatigue Behavior of HS80H Ferritic–Martensitic Steel Under Dynamic Strain Aging

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, low-cycle fatigue tests were performed on HS80H ferritic–martensitic steel with the strain amplitudes ranging from 0.5 to 2.0% at room temperature and 350 °C. The cyclic stress response at 350  °C was found to be different from that at room temperature due to the effect of dynamic strain aging and showed a significant secondary hardening when the strain values were 0.5 and 0.7%. Furthermore, the dynamic strain aging effect also resulted in an abnormal increase in fatigue life when the strain was 0.7%, which was due to the change in elastic strain. Additionally, the elastic strain and fatigue life were bilinear relations in the double logarithmic coordinates. Finally, the transmission electron microscope observations showed that the dynamic strain aging led to the change in substructure, while the grain was refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.Y. Churyumov, M.G. Khomutov, A.N. Solonin, A.V. Pozdniakov, T.A. Churyumova, and B.F. Minyaylo, Hot Deformation Behaviour and Fracture of 10CrMoWNb Ferritic–Martensitic Steel, Mater. Des., 2015, 74, p 44–54

    Article  CAS  Google Scholar 

  2. J. Nikitin, S. Schoch, and A.M. Freund, Effect of Silicon on the Microstructure and Mechanical Properties of Reduced Activation Ferritic/Martensitic Steel, J. Nucl. Mater., 2015, 459(7), p 13–19

    Google Scholar 

  3. X. Gong, E. Stergar, P. Marmy, S. Gavrilov, X. Gong, E. Stergar, P. Marmy, S. Gavrilov, X. Gong, and E. Stergar, Tensile Fracture Behavior of Notched 9Cr-1Mo Ferritic–Martensitic Steel Specimens in Contact with Liquid Lead-Bismuth Eutectic at 350 °C, Mater. Sci. Eng. A, 2017, 692, p 139–145

    Article  CAS  Google Scholar 

  4. A. Nagesha, M. Valsan, R. Kannan, K.B.S. Rao, and S.L. Mannan, Influence of Temperature on the Low Cycle Fatigue Behaviour of a Modified 9Cr-1Mo Ferritic Steel, Int. J. Fatigue, 2002, 24(12), p 1285–1293

    Article  CAS  Google Scholar 

  5. A.K. Ambastha, Thermal Recovery Well Test Design and Interpretation, SPE Form. Eval., 1989, 4(4), p 173–180

    Article  Google Scholar 

  6. R. Lin, D. Song, X. Wang, and D. Yang, Experimental Determination of In Situ Hydrogen Sulfide Production during Thermal Recovery Processes, Energy Fuels, 2016, 30(7), p 5323–5329

    Article  CAS  Google Scholar 

  7. J.S. Jeon, S.R. Lee, L. Pasquinelli, and I.L. Fabricius, Sensitivity Analysis of Recovery Efficiency in High-Temperature Aquifer Thermal Energy Storage with Single Well, Energy, 2015, 90(3), p 1349–1359

    Article  Google Scholar 

  8. M.A. Soare and W.A. Curtin, Single-Mechanism Rate Theory for Dynamic Strain Aging in fcc Metals, Acta Mater., 2008, 56(15), p 4091–4101

    Article  CAS  Google Scholar 

  9. C.S. Seok and K.L. Murty, Effect of Dynamic Strain Aging on Mechanical and Fracture Properties of A516Gr70 Steel, Int. J. Press. Vessels Pip., 1999, 76(14-15), p 945–953

    Article  CAS  Google Scholar 

  10. S.G. Hong and S.B. Lee, The Tensile and Low-Cycle Fatigue Behavior of Cold Worked 316L Stainless Steel: Influence of Dynamic Strain Aging, Int. J. Fatigue, 2004, 26(8), p 899–910

    Article  CAS  Google Scholar 

  11. D. Wagner, J.C. Moreno, and C. Prioul, Dynamic Strain Aging Sensitivity of Heat Affected Zones in C-Mn Steels, J. Nucl. Mater., 1998, 252(3), p 257–265

    Article  CAS  Google Scholar 

  12. K. Mariappan, V. Shankar, R. Sandhya, G.V.P. Reddy, and M.D. Mathew, Dynamic Strain Aging Behavior of Modified 9Cr-1Mo and Reduced Activation Ferritic Martensitic Steels Under Low Cycle Fatigue, J. Nucl. Mater., 2013, 435(1-3), p 207–213

    Article  CAS  Google Scholar 

  13. C.Y. Cui, Y.F. Gu, Y. Yuan, and H. Harada, Dynamic Strain Aging in a New Ni-Co Base Superalloy, Scr. Mater., 2011, 64(6), p 502–505

    Article  CAS  Google Scholar 

  14. W. Karlsen, M. Ivanchenko, U. Ehrnstén, Y. Yagodzinskyy, and H. Hänninen, Microstructural Manifestation of Dynamic Strain Aging in AISI, 316 Stainless Steel, J. Nucl. Mater., 2009, 395(1-3), p 156–161

    Article  CAS  Google Scholar 

  15. W. Wei, L. Han, H. Wang, J. Wang, J. Zhang, Y. Feng, and T. Tian, Low-Cycle Fatigue Behavior and Fracture Mechanism of HS80H Steel at Different Strain Amplitudes and Mean Strains, J. Mater. Eng. Perform., 2017, 26(4), p 1717–1725

    Article  CAS  Google Scholar 

  16. W. Wei, L. Han, J. Wang, W. Hang, and Y. Feng, High Temperature Mechanical Properties of 10Cr3Mo and N80 Steels, Heat Treat. Met., 2016, 41(2), p 23–27

    CAS  Google Scholar 

  17. V.S. Srinivasan, R. Sandhya, M. Valsan, K.B.S. Rao, S.L. Mannan, and D.H. Sastry, The Influence of Dynamic Strain Ageing on Stress Response and Strain–Life Relationship in Low Cycle Fatigue of 316L(N) Stainless Steel, Scr. Mater., 1997, 37(10), p 1593–1598

    Article  CAS  Google Scholar 

  18. C. Ye, S. Suslov, B.J. Kim, E.A. Stach, and G.J. Cheng, Fatigue Performance Improvement in AISI, 4140 Steel by Dynamic Strain Aging and Dynamic Precipitation During Warm Laser Shock Peening, Acta Mater., 2011, 59(3), p 1014–1025

    Article  CAS  Google Scholar 

  19. H.W. Zhou, Y.Z. He, H. Zhang, and Y.W. Cen, Influence of Dynamic Strain Aging Pre-treatment on the Low-Cycle Fatigue Behavior of Modified 9Cr-1Mo Steel, Int. J. Fatigue, 2013, 47(1), p 83–89

    Article  CAS  Google Scholar 

  20. Z. Huang, D. Wagner, and C. Bathias, Some Metallurgical Aspects of Dynamic Strain Aging Effect on the Low Cycle Fatigue Behavior of C-Mn Steels, Int. J. Fatigue, 2015, 80(3), p 113–120

    Article  CAS  Google Scholar 

  21. M.S. Pham and S.R. Holdsworth, Role of Microstructural Condition on Fatigue Damage Development of AISI, 316L at 20 and 300 & #xB0;C, Int. J. Fatigue, 2013, 51, p 36–48

    Article  CAS  Google Scholar 

  22. M. Koyama, T. Sawaguchi, and K. Tsuzaki, Selective Appearance of ϵ-Martensitic Transformation and Dynamic Strain Aging in Fe-Mn-C Austenitic Steels, Phil. Mag., 2012, 92(24), p 3051–3063

    Article  CAS  Google Scholar 

  23. M. Koyama, T. Sawaguchi, and K. Tsuzaki, Influence of Dislocation Separation on Dynamic Strain Aging in a Fe-Mn-C Austenitic Steel, Mater. Trans., 2012, 53(3), p 546–552

    Article  CAS  Google Scholar 

  24. J. Cheng and S. Nemat-Nasser, A Model for Experimentally-Observed High-Strain-Rate Dynamic Strain Aging in Titanium, Acta Mater., 2000, 48(12), p 3131–3144

    Article  CAS  Google Scholar 

  25. Institution BS. Iso/cd 12106 - Metallic Materials - Fatigue Testing Axial Strain - Controlled Method

  26. O.H. Basquin, The Exponential Law on Endurance Tests, Vol 10, ASTM, West Conshohocken, 1910

    Google Scholar 

  27. L.F.J. Coffin, A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Rheumatism, 1953, 22(6), p 419–606

    Google Scholar 

  28. S.S. Manson, Behavior of Materials Under Conditions of Thermal Stress, Techn. Rep. Arch. Image Libr., 1954, 7(s3-4), p 661–665

    Google Scholar 

  29. R. Klinman, G.R. Webster, F.J. Marsh, and E.T. Stephenson, Ultrasonic Prediction of Grain Size, Strength, and Toughness in Plain Carbon Steel, Mater. Eval., 1980, 38(10), p 26–32

    CAS  Google Scholar 

  30. N.J. Petch, The Influence of Grain Boundary Carbide and Grain Size on the Cleavage Strength and Impact Transition Temperature of Steel, Acta Metall., 1986, 34(7), p 1387–1393

    Article  CAS  Google Scholar 

  31. P.H. Chang and A.G. Preban, The Effect of Ferrite Grain Size and Martensite Volume Fraction on the Tensile Properties of Dual Phase Steel, Acta Metall., 1985, 33(5), p 897–903

    Article  CAS  Google Scholar 

  32. J. Polák, M. Klesnil, and J. Helešic, Cyclic Stress–Strain Response of 2 1/4Cr-1 Mo Steel at Elevated Temperatures, Fatigue Fract. Eng. Mater. Struct., 2010, 9(3), p 185–194

    Article  Google Scholar 

  33. G.G. Al-Khateeb and K.A. Ghuzlan, The Combined Effect of Loading Frequency, Temperature, and Stress Level on the Fatigue Life of Asphalt Paving Mixtures Using the IDT Test Configuration, Int. J. Fatigue, 2014, 59(3), p 254–261

    Article  CAS  Google Scholar 

  34. B. Vieille and W. Albouy, Fatigue Damage Accumulation in Notched Woven-Ply Thermoplastic and Thermoset Laminates at High-Temperature: Influence of Matrix Ductility and Fatigue Life Prediction, Int. J. Fatigue, 2015, 80, p 1–9

    Article  CAS  Google Scholar 

  35. L. Straßberger, A. Chauhan, T. Gräning, S. Czink, and J. Aktaa, High-Temperature Low-Cycle Fatigue Behavior of Novel Austenitic ODS Steels, Int. J. Fatigue, 2016, 93, p 194–200

    Article  Google Scholar 

  36. D. Lefebvre and F. Ellyin, Cyclic Response and Inelastic Strain Energy in Low Cycle Fatigue, Int. J. Fatigue, 1984, 6(1), p 9–15

    Article  Google Scholar 

  37. K.W. Qian and R.E. Reed-Hill, A Model for the Flow Stress and Strain Rate Sensitivity of a Substitutional Alloy—Cu-3.1 at.% Sn, Acta Metall., 1983, 31(1), p 87–94

    Article  Google Scholar 

  38. R.E. Reedhill and T. Zhu, A Model for the Flow Stress and Strain Rate Sensitivity in a Refractory Metal, High Temp. Mater. Process. (London), 1984, 6(1-2), p 93–117

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Contact No. 51574278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlan Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Feng, Y., Han, L. et al. High-Temperature Low-Cycle Fatigue Behavior of HS80H Ferritic–Martensitic Steel Under Dynamic Strain Aging. J. of Materi Eng and Perform 27, 6629–6635 (2018). https://doi.org/10.1007/s11665-018-3726-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3726-7

Keywords

Navigation