Skip to main content
Log in

Fracture Analysis of ARB-Processed CP-Ti Sheets Under Unidirectional Tensile Loading

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fracture behavior of commercially pure titanium (CP-Ti) processed by accumulative roll bonding (ARB) was investigated in this study. Monolithic and Ti-SiC composite samples were first produced by ARB process and then subjected to uniaxial tensile testing at room temperature. Two different ductile fracture mechanisms including shear dimple rupture and equiaxed dimple rupture were observed in the initial and final ARB cycles, respectively. The difference in the rupture mechanism was attributed to different stress states at the crack tip and different densities of metallurgical defects. A non-uniform distribution of dimple size was obtained for fracture surfaces of the samples processed by a low number of ARB cycles. This was attributed to the heterogeneity of microstructure in the primary ARB cycles. The fracture surface of the samples processed by high ARB cycles represented more uniform dimples. This was attributed to more homogenous microstructure in the final cycles. Moreover, SiC particles showed a major role in fracture of samples, so that they affected the size and depth of the dimples, as well as the number of ARB cycles in which the transmission of the fracture mechanism occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials-Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583

    Article  CAS  Google Scholar 

  2. R. Jamaati and M.R. Toroghinejad, Application of ARB Process for Manufacturing High-Strength, Finely Dispersed and highly Uniform Cu/Al2O3 Composite, Mater. Sci. Eng. A, 2010, 527(27), p 7430–7435

    Article  Google Scholar 

  3. M.R. Toroghinejad, R. Jamaati, A. Nooryan, and H. Edris, Hybrid Composites Produced by Anodizing and Accumulative Roll Bonding (ARB) Processes, Ceram. Int., 2014, 40(7), p 10027–10035

    Article  CAS  Google Scholar 

  4. P.D. Motevalli and B. Eghbali, Microstructure and Mechanical Properties of Tri-metal Al/Ti/Mg Laminated Composite Processed by Accumulative roll Bonding, Mater. Sci. Eng. A, 2015, 628, p 135–142

    Article  CAS  Google Scholar 

  5. V. Yousefi Mehr, A. Rezaeian, and M.R. Toroghinejad, Application of Accumulative Roll Bonding and Anodizing Process to Produce Al-Cu-Al2O3 composite, Mater. Des., 2015, 70, p 53–59

    Article  CAS  Google Scholar 

  6. A. Das and S. Tarafder, Geometry of Dimples and its Correlation with Mechanical Properties in Austenitic Stainless Steel, Scr. Mater., 2008, 59(9), p 1014–1017

    Article  CAS  Google Scholar 

  7. G.E. Dieter and D. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986

    Google Scholar 

  8. H.M. Tawancy, A. Ul-Hamid, and N.M. Abbas, Practical Engineering Failure Analysis, CRC Press, Boca Raton, 2004

    Book  Google Scholar 

  9. J.P. Bandstra, D.A. Koss, A. Geltmacher, P. Matic, and R.K. Everett, Modeling Void Coalescence During Ductile Fracture of a Steel, Mater. Sci. Eng. A, 2004, 366(2), p 269–281

    Article  Google Scholar 

  10. T.F. Morgeneyer and J. Besson, Flat to Slant Ductile Fracture Transition: Tomography Examination and Simulations Using Shear-Controlled Void Nucleation, Scr. Mater., 2011, 65(11), p 1002–1005

    Article  CAS  Google Scholar 

  11. I. Barsoum and J. Faleskog, Rupture Mechanisms in Combined Tension and Shear-Micromechanics, Int. J. Solids Struct., 2007, 44(17), p 5481–5498

    Article  CAS  Google Scholar 

  12. S. Roy, B.R. Nataraj, S. Suwas, S. Kumar, and K. Chattopadhyay, Accumulative Roll Bonding of Aluminum Alloys 2219/5086 Laminates: Microstructural Evolution and Tensile Properties, Mater. Des., 2012, 36, p 529–539

    Article  CAS  Google Scholar 

  13. L. Su, C. Lu, H. Li, G. Deng, and K. Tieu, Investigation of Ultrafine Grained AA1050 Fabricated by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2014, 614, p 148–155

    Article  CAS  Google Scholar 

  14. C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, and R.P. Liu, Evaluation of Mechanical Properties of 1060-Al Reinforced with WC Particles Via Warm Accumulative Roll Bonding Process, Mater. Des., 2013, 43, p 367–372

    Article  CAS  Google Scholar 

  15. R.N. Dehsorkhi, F. Qods, and M. Tajally, Investigation on Microstructure and Mechanical Properties of Al-Zn Composite During Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2011, 530, p 63–72

    Article  CAS  Google Scholar 

  16. M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, On the Use of Accumulative Roll Bonding Process to Develop Nanostructured Aluminum Alloy 5083, Mater. Sci. Eng. A, 2013, 561, p 145–151

    Article  Google Scholar 

  17. A. Shabani, M.R. Toroghinejad, and A. Shafyei, Fabrication of Al/Ni/Cu Composite by Accumulative Roll Bonding and Electroplating Processes and Investigation of its Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2012, 558, p 386–393

    Article  CAS  Google Scholar 

  18. M. Rezayat, A. Akbarzadeh, and A. Owhadi, Production of High Strength Al-Al2O3 Composite by Accumulative Roll Bonding, Compos. Part A, Appl. Sci. Manuf., 2012, 43(2), p 261–267

    Article  CAS  Google Scholar 

  19. M. Karimi and M.R. Toroghinejad, An Alternative Method for Manufacturing High-Strength CP Ti-SiC Composites by Accumulative Roll Bonding Process, Mater. Des., 2014, 59, p 494–501

    Article  CAS  Google Scholar 

  20. D. Terada, M. Inoue, H. Kitahara, and N. Tsuji, Change in Mechanical Properties and Microstructure of ARB Processed Ti during Annealing, Mater. Trans., 2008, 49, p 41–46

    Article  CAS  Google Scholar 

  21. M. Karimi, M.R. Toroghinejad, and Kh Farmanesh, Multi-Response Optimization on the Annealing of Accumulative Roll Bonded Monolithic Ti and Ti-SiCp Composites, Mater. Des., 2015, 65, p 34–41

    Article  CAS  Google Scholar 

  22. J.L. Milner, F. Abu-Farh, C. Bunget, Th Kurfess, and V.H. Hammond, Grain Refinement and Mechanical Properties of CP-Ti Processed by Warm Accumulative Roll Bonding, Mater. Sci. Eng. A, 2013, 561, p 109–117

    Article  CAS  Google Scholar 

  23. J.A. Fellows, Metals Handbook: Fractography and Atlas of Fractographs, American Society for Metals, Cleveland, 1974

    Google Scholar 

  24. I. Barsoum, The Effect of Stress State in Ductile Failure, Diss, KTH, 2008

    Google Scholar 

  25. R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1996

    Google Scholar 

  26. R.G. Broadwell, Toughness and Fracture Behavior of Titanium, ASTM International, 1978

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M., Toroghinejad, M.R. & Dutkiewicz, J. Fracture Analysis of ARB-Processed CP-Ti Sheets Under Unidirectional Tensile Loading. J. of Materi Eng and Perform 27, 6097–6106 (2018). https://doi.org/10.1007/s11665-018-3680-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3680-4

Keywords

Navigation