Skip to main content
Log in

Influences of Ribs on the Residual Stress and Deformation of Long Stringer Aluminum Alloy Forgings During Quenching

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To improve the mechanical properties of aluminum alloy forgings, solution treatment and quenching is necessary. However, it becomes difficult to control the residual stress and deformation after solution treatment and quenching which always results in obtaining a part with an undesirable size, especially for a long stringer forging with an existing rib. Therefore, this paper demonstrates a quenching experiment and residual stress measurements for a ribbed aluminum alloy forging; the calculated results are close to the actual convective heat transfer coefficients. In addition, the heat transfer coefficient is introduced into the quenching simulation of a long stringer forging consisting of rib-web forging and plate forging. The influence of ribs on the residual stress and deformation of the forging is compared and analyzed. The results show that the heat transfer coefficient on the web without a rib is highest and the heat transfer coefficient on the web below the rib is lowest. Compared with the plate forging, the deformation direction of the rib-web forging is opposite, and the deformation of the rib-web forging is obviously increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A.S. Warren, Developments and Challenges for Aluminum—A Boeing Perspective, in Materials Forum, Brisbane, Australia (2004), p. 24–31

  2. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871

    Article  CAS  Google Scholar 

  3. Y.L. Deng, L. Wan, Y.Y. Zhang, and X.M. Zhang, Influence of Mg Content on Quench Sensitivity of Al-Zn-Mg-Cu Aluminum Alloys, J. Alloys Compd., 2011, 509, p 4636–4642

    Article  CAS  Google Scholar 

  4. A. Deschamps and Y. Brechet, Nature and Distribution of Quench-Induced Precipitation in an Al-Zn-Mg-Cu Alloy, Scr. Mater., 1998, 39, p 1517–1522

    Article  CAS  Google Scholar 

  5. N. Chobaut, P. Saelzle, G. Michel, D. Carron, and J.M. Drezet, Quench-Induced Stresses in AA2618 Forgings for Impellers: A Multiphysics and Multiscale Problem, JOM, 2015, 67, p 984–990

    Article  CAS  Google Scholar 

  6. D.A. Tanner and J.S. Robinson, Residual Stress Magnitudes and Related Properties in Quenched Aluminium Alloys, Mater. Sci. Technol., 2006, 22, p 77–85

    Article  CAS  Google Scholar 

  7. N. Mascarenhas and I. Mudawar, Analytical and Computational Methodology for Modeling Spray Quenching of Solid Alloy Cylinders, Int. J. Heat Mass Transf., 2010, 53, p 5871–5883

    Article  CAS  Google Scholar 

  8. S. Denis, P. Archambault, E. Gautier, A. Simon, and G. Beck, Prediction of Residual Stress and Distortion of Ferrous and Non-ferrous Metals: Current Status and Future Developments, J. Mater. Eng. Perform., 2002, 11, p 92–102

    Article  CAS  Google Scholar 

  9. J. Zhang, Y.L. Deng, W. Yang, S.S. Hu, and X.M. Zhang, Design of the Multi-Stage Quenching Process for 7050 Aluminum Alloy, Mater. Des., 2014, 56, p 334–344

    Article  CAS  Google Scholar 

  10. J.S. Robinson and D.A. Tanner, Reducing Residual Stress in 7050 Aluminum Alloy Die Forgings by Heat Treatment, J. Eng. Mater. Technol. Trans. ASME, 2008, 130, p 1–8

    Article  Google Scholar 

  11. P. Hofer, E. Kaschnitz, and P. Schumacher, Distortion and Residual Stress in High-Pressure Die Castings: Simulation and Measurements, JOM, 2014, 66, p 1638–1646

    Article  CAS  Google Scholar 

  12. O. Kessler and M. Reich, Similarities and Differences in Heat Treatment Simulation of Aluminium Alloys and Steels, Materialwissensch. Werkst., 2009, 40, p 473–478

    Article  CAS  Google Scholar 

  13. K. Babu and T.S.P. Kumar, Mathematical Modeling of Surface Heat Flux During Quenching, Metall. Mater. Trans. B, 2010, 41, p 214–224

    Article  Google Scholar 

  14. X.W. Yang, J.C. Zhu, Z.S. Nong, Z.H. Lai, and D. He, FEM Simulation of Quenching Process in A357 Aluminum Alloy Cylindrical Bars and Reduction of Quench Residual Stress Through Cold Stretching Process, Comput. Mater. Sci., 2013, 69, p 396–413

    Article  CAS  Google Scholar 

  15. R. Kopun, L. Skerget, M. Hribersek, D.S. Zhang, B. Stauder, and D. Greif, Numerical Simulation of Immersion Quenching Process for Cast Aluminium Part at Different Pool Temperatures, Appl. Therm. Eng., 2014, 65, p 74–84

    Article  CAS  Google Scholar 

  16. Y.B. Dong, W.Z. Shao, J.T. Jiang, D.Y. Chao, and L. Zhen, Influence of Quenching Rate on Microstructure and Dimensional Stability of Al-Cu-Mg-Si Alloy, Mater. Sci. Technol., 2016, 32, p 1861–1868

    Article  CAS  Google Scholar 

  17. B.W. Xiao, Q.G. Wang, P. Jadhav, and K.Y. Li, An Experimental Study of Heat Transfer in Aluminum Castings During Water Quenching, J. Mater. Process. Tech., 2010, 210, p 2023–2028

    Article  CAS  Google Scholar 

  18. L. Zhang, X. Feng, Z.G. Li, and C.Y. Liu, FEM Simulation and Experimental Study on the Quenching Residual Stress of Aluminum Alloy 2024, Proc. Inst. Mech. Eng. B J. Eng., 2013, 227, p 954–964

    Article  CAS  Google Scholar 

  19. M. Koc, J. Culp, and T. Altan, Prediction of Residual Stresses in Quenched Aluminum Blocks and their Reduction through Cold Working Processes, J. Mater. Process. Technol., 2006, 174, p 342–354

    Article  CAS  Google Scholar 

  20. B.H. Nie, P.Y. Liu, and T.T. Zhou, Effect of Compositions on the Quenching Sensitivity of 7050 and 7085 Alloys, Mater. Sci. Eng. A, 2016, 667, p 106–114

    Article  CAS  Google Scholar 

  21. D.Q. Shi, K.J. Kang, G.L. Gao, and Z.J. Chen, Effect of Quench Process on Mechanical Properties and Conductivity of 7475 Alloy, Mater. Trans., 2016, 57, p 37–41

    Article  CAS  Google Scholar 

  22. C.B. Li, S.L. Wang, D.Z. Zhang, S.D. Liu, Z.J. Shan, and X.M. Zhang, Effect of Zener–Hollomon Parameter on Quench Sensitivity of 7085 Aluminum Alloy, J. Alloys Compd., 2016, 688, p 456–462

    Article  CAS  Google Scholar 

  23. M.J. Wang, G. Yang, C.Q. Huang, and B. Chen, Simulation of Temperature and Stress in 6061 Aluminum Alloy During Online Quenching Process, Trans. Nonferrous Met. Soc., 2014, 24, p 2168–2173

    Article  CAS  Google Scholar 

  24. N. Jarvstrat and S. Tjotta, Process Model for On-Line Quenching of Aluminium Extrusions, Metall. Mater. Trans. B, 1996, 27, p 501–508

    Article  Google Scholar 

  25. D.H. Ko, D.C. Ko, H.J. Lim, J.M. Lee, and B.M. Kim, Prediction and Measurement of Relieved Residual Stress by the Cryogenic Heat Treatment for Al6061 Alloy: Mechanical Properties and Microstructure, J. Mech. Sci. Technol., 2013, 27, p 1949–1955

    Article  Google Scholar 

  26. H. Gong, Y.X. Wu, and K. Liao, Prediction Model of Residual Stress Field in Aluminum Alloy Plate, J. Cent. South Univ. Technol., 2011, 18, p 285–289

    Article  Google Scholar 

  27. B.W. Xiao, K.Y. Li, Q.G. Wang, and Y.M. Rong, Numerical Simulation and Experimental Validation of Residual Stresses in Water-Quenched Aluminum Alloy Castings, J. Mater. Eng. Perform., 2011, 20, p 1648–1657

    Article  CAS  Google Scholar 

  28. N. Xu, Q.N. Song, Y.F. Bao, Y.F. Jiang, and J. Shen, Achieving an Excellent Strength-Ductility Synergy in Zircaloy-4 by FSW with Rapid Cooling, Mater. Sci. Technol., 2018, 34, p 20–28

    Article  CAS  Google Scholar 

  29. S. Bikass, B. Andersson, A. Pilipenko, and H.P. Langtangen, Spray Footprint Effect on the Induced Distortion by the Cooling Process in the Aluminum Extrusion Process, Appl. Therm. Eng., 2013, 57, p 14–23

    Article  CAS  Google Scholar 

  30. D.A. Lados, D. Apelian, and L.B. Wang, Minimization of Residual Stress in Heat-Treated Al-Si-Mg Cast Alloys Using Uphill Quenching: Mechanisms and Effects on Static and Dynamic Properties, Mater. Sci. Eng. A, 2010, 527, p 3159–3165

    Article  Google Scholar 

  31. J.D. Cui, Y.P. Yi, and G.Y. Luo, Numerical and Experimental Research on Cold Compression Deformation Method for Reducing Quenching Residual Stress of 7A85 Aluminum Alloy Thick Block Forging, Adv. Mater. Sci. Eng., 2017, 2017, p 1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, D., Liang, N. et al. Influences of Ribs on the Residual Stress and Deformation of Long Stringer Aluminum Alloy Forgings During Quenching. J. of Materi Eng and Perform 27, 5350–5359 (2018). https://doi.org/10.1007/s11665-018-3600-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3600-7

Keywords

Navigation