Skip to main content
Log in

Influence of Cu/Li Ratio on the Welding Forces and Mechanical Properties of Two Bobbin Tool Friction Stir Welded Al-Cu-Li Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Increasing space activities produce a high number of space objects and lead to increasing collision risks which urges leading industries to look for future removal strategies. Material substitution in order to raise demisability during atmospheric reentry is a possible solution. Modern aluminum lithium alloys are under consideration to replace high-temperature melting materials like titanium. Further, friction stir welding was proposed as suitable joining technology in order to avoid high heat inputs during manufacturing. In this work, two modern Al-Li-Cu alloys, AA 2060 and AA 2196, in peak-aged temper were welded using the stationary shoulder variant of bobbin tool friction stir welding. Identical process parameters led to defect-free welds in both alloys. The macrostructural and microstructural features are shown and analyzed. The welds were mechanically tested to an efficiency of 78 and 70% of the base metal ultimate tensile strength for AA 2060 T8 and AA 2196 T8, respectively. The process forces as well as the thermal cycle experienced by the workpiece material were used to explain the mechanical performance. The difference in composition regarding the Cu/Li ratio of the alloys was taken into account when the mechanical properties were correlated with the thermally affected microstructure of the weldments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. NASA Orbital Debris Program Office, Nasa, p. 2011, 2011.

  2. W.M.B. Peter and S. Studies, Spacecraft Design-for-Demise Strategy, Analysis and Impact on Low Earth Orbit Space Mission (2009).

  3. C. Giummarra, B. Thomas, and R. Rioja, New aluminum alloys for aerospace applications. in Proc. Light Met. Technol. Conf. 2007 (2007).

  4. J. Goebel, M. Reimann, A. Norman, and J.F. dos Santos, Semi-stationary Shoulder Bobbin Tool Friction Stir Welding of AA2198-T851, J. Mater. Process. Technol., 2017, 245, p 37–45

    Article  CAS  Google Scholar 

  5. M. Skinner and R.L. Edwards, Improvements to the FSW Process Using the Self-Reacting Technology, Mater. Sci. Forum, 2003, 426–432, p 2849–2854

    Article  Google Scholar 

  6. J.A. Schneider, A.C. Nunes, and M.S. Brendel, The influence of friction stir weld tool form and welding parameters on weld structure and properties: nugget bulge in self- reacting friction stir welds the influence of friction stir weld tool form and welding parameters on weld structure and properties. in 8th International Symposium on Friction Stir Welding (2010).

  7. F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, and J.F. dos Santos, Effect of Tool Rotational Speed on the Microstructure and Mechanical Properties of Bobbin Tool Friction Stir Welding of Al-Li Alloy, Mater. Des., 2015, 86, p 933–940

    Article  CAS  Google Scholar 

  8. J. Shen, F. Wang, U.F.H. Suhuddin, S. Hu, W. Li, and J.F. dos Santos, Crystallographic Texture in Bobbin Tool Friction-Stir-Welded Aluminum, Metall. Mater. Trans. A, 2015, 46(7), p 2809–2813

    Article  CAS  Google Scholar 

  9. R.J.H. Wanhill, Aerospace Applications of Aluminum-Lithium Alloys, Vol i, Elsevier, New York, 2013

    Google Scholar 

  10. R. Bellarosa et al., SPACE PROPULSION 2016. no. May, 2016.

  11. H. Sidhar and R.S. Mishra, Aging Kinetics of Friction Stir Welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg Alloys, Mater. Des., 2016, 110, p 60–71

    Article  CAS  Google Scholar 

  12. D. Trimble, J. Monaghan, G.E. O’donnell, and J. Jedrzejewski, Force Generation During Friction Stir Welding of AA2024-T3, CIRP Ann. Manuf. Technol., 2012, 61, p 9–12

    Article  Google Scholar 

  13. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Reports, 2005, 50(1–2), p 1–78

    Article  Google Scholar 

  14. K. Colligan, Material Flow Behavior during Friction Stir Welding of Aluminum, Weld. J., 1999, 78(July), p 229–237

    Google Scholar 

  15. H. Wu, Y.-C. Chen, D. Strong, and P. Prangnell, Stationary Shoulder FSW for Joining High Strength Aluminum Alloys, J. Mater. Process. Technol., 2015, 221, p 187–196

    Article  CAS  Google Scholar 

  16. M. Esmaily et al., Bobbin and Conventional Friction Stir Welding of Thick Extruded AA6005-T6 Profiles, Mater. Des., 2016, 108, p 114–125

    Article  CAS  Google Scholar 

  17. A. Gerlich, A. Avramovi-Cingara, and T.H. North, Stir Zone Microstructure and Strain Rate during Al 7075-T6 Friction Stir Spot Welding, Metall. Mater. Trans. A, 2006, 37, p 2006–2773

    Article  Google Scholar 

  18. H.J. Mcqueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2011

    Google Scholar 

  19. B. Decreus, A. Deschamps, P. Donnadieu, and J.C. Ehrström, On the Role of Microstructure in Governing Fracture Behavior of an Aluminum-Copper-Lithium Alloy, Mater. Sci. Eng. A, 2013, 586, p 418–427

    Article  CAS  Google Scholar 

  20. B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, and M. Weyland, The Influence of Cu/Li Ratio on Precipitation in Al-Cu-Li-x Alloys, Acta Mater., 2013, 61(6), p 2207–2218

    Article  CAS  Google Scholar 

  21. F. De Geuser, B. Malard, and A. Deschamps, Microstructure Mapping of a Friction Stir Welded AA2050 Al-Li-Cu in the T8 State, Philos. Mag., 2014, 94(13), p 1451–1462

    Article  Google Scholar 

  22. B. Cai, Z.Q. Zheng, D.Q. He, S.C. Li, and H.P. Li, Friction stir Weld of 2060 Al-Cu-Li Alloy: Microstructure and Mechanical Properties, J. Alloys Compd., 2015, 649, p 19–27

    Article  CAS  Google Scholar 

  23. A.K. Shukla and W.A. Baeslack, Study of Process/Structure/Property Relationships in Friction Stir Welded Thin Sheet Al-Cu-Li Alloy, Sci. Technol. Weld. Join., 2009, 14(4), p 376–387

    Article  CAS  Google Scholar 

  24. P.B. Prangnell and C.P. Heason, Grain Structure Formation During Friction Stir Welding Observed by the ‘Stop Action Technique’, Acta Mater., 2005, 53(11), p 3179–3192

    Article  CAS  Google Scholar 

  25. M.J. Starink, A. Deschamps, and S.C. Wang, The Strength of Friction Stir Welded and Friction Stir Processed Aluminium Alloys, Scr. Mater., 2008, 58(5), p 377–382

    Article  CAS  Google Scholar 

  26. A.K. Shukla and W.A. Baeslack, Study of Microstructural Evolution in Friction-Stir Welded Thin-Sheet Al-Cu-Li Alloy Using Transmission-Electron Microscopy, Scr. Mater., 2007, 56(6), p 513–516

    Article  CAS  Google Scholar 

  27. C. Gao, Z. Zhu, J. Han, and H. Li, Correlation of Microstructure and Mechanical Properties in Friction Stir Welded 2198-T8 Al–Li Alloy, Mater. Sci. Eng. A, 2015, 639, p 489–499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannik Goebel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goebel, J., Reimann, M. & dos Santos, J.F. Influence of Cu/Li Ratio on the Welding Forces and Mechanical Properties of Two Bobbin Tool Friction Stir Welded Al-Cu-Li Alloys. J. of Materi Eng and Perform 27, 5212–5219 (2018). https://doi.org/10.1007/s11665-018-3551-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3551-z

Keywords

Navigation