Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of Keyhole Repair Welds in AA 2219-T851 Using Refill Friction Stir Spot Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The search for a suitable friction-based keyhole repair technique that fulfills the requirements for high-quality repair welds has become an important research topic, especially for aerospace applications. In order to provide and analyze an universal keyhole repair method for lightweight metals, refill friction stir spot welding is applied to through-hole repairs in 3- and 6-mm-thick sheets of precipitate hardening AA 2219-T851. Keyholes with a diameter of 7.5 mm were repair welded achieving a defect-free microstructure. The correlation between the microstructural evolution imposed by the repair process and the resulting mechanical properties is shown. A comprehensive analysis of the precipitate evolution in peak-aged AA 2219 during RFSSW is presented. Thermal cycle measurements revealed high heating rates and peak temperatures of up to 520 °C in the weld center. The thermal cycle caused mainly dissolution and minor equilibrium phase formation in the stirred zone. In the HAZ, overaging of the strengthening precipitates dominates with minor dissolution and equilibrium phase formation only in the direct proximity of the SZ. Microstructural analysis revealed typical weld zone formation with inhomogeneous grain size distribution in the SZ. The resulting mechanical properties are dominated by an inhomogeneous hardness distribution with lowest hardness in the TMAZ at 5 mm from the center of the weld. During tensile loading main yielding and the final fracture occur in the area of lowest strength. Tensile testing showed yield strength of 40 to 46% and UTS of 28 to 25% below BM values in 3- and 6-mm-thick sheets, respectively. The sheet thickness and post-weld natural aging were found to influence the mechanical properties of the weld significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Barbini, J. Carstensen, and J.F. dos Santos, Influence of a Non-rotating Shoulder on Heat Generation, Microstructure and Mechanical Properties of Dissimilar AA2024/AA7050 FSW Joints, J. Mater. Sci. Technol. (2017)

  2. J. Goebel, M. Reimann, A. Norman, and J.F. dos Santos, Semi-Stationary Shoulder Bobbin Tool Friction Stir Welding of AA2198-T851, J. Mater. Process. Technol., 2017, 245, p 37–45

    Article  CAS  Google Scholar 

  3. G. Çam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys, J. Mater. Eng. Perform., 2014, 23(6), p 1936–1953

    Article  Google Scholar 

  4. M. Reimann, J. Goebel, and J.F. dos Santos, Microstructure and Mechanical Properties of Keyhole Repair Welds in AA 7075-T651 Using Refill Friction Stir Spot Welding, Mater. Des., 2017, 132, p 283–294

    Article  CAS  Google Scholar 

  5. M. Reimann, T. Gartner, U. Suhuddin, J. Göbel, and J.F. dos Santos, Keyhole Closure Using Friction Spot Welding in Aluminum Alloy 6061–T6, J. Mater. Process. Technol., 2016, 237, p 12–18

    Article  CAS  Google Scholar 

  6. M. Reimann, J. Goebel, T.M. Gartner, and J.F. dos Santos, Refilling Termination Hole in AA 2198-T851 by Refill Friction Stir Spot Welding, J. Mater. Process. Technol., 2017, 245, p 157–166

    Article  CAS  Google Scholar 

  7. B. Li and Y. Shen, The Investigation of Abnormal Particle-Coarsening Phenomena in Friction Stir Repair Weld of 2219-T6 Aluminum Alloy, Mater. Des., 2011, 32(7), p 3796–3802

    Article  CAS  Google Scholar 

  8. X. Lei, Y. Deng, Z. Yin, and G. Xu, Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219–T87 Plates at Room Temperature and – 196 °C, J. Mater. Eng. Perform., 2014, 23(6), p 2149–2158

    Article  CAS  Google Scholar 

  9. J. Kang, Z.-C. Feng, G.S. Frankel, I.W. Huang, G.-Q. Wang, and A.-P. Wu, Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates, Metall. Mater. Trans. A, 2016, 47(9), p 4553–4565

    Article  CAS  Google Scholar 

  10. K.S. Arora, S. Pandey, M. Schaper, and R. Kumar, Microstructure Evolution during Friction Stir Welding of Aluminum Alloy AA2219, J. Mater. Sci. Technol., 2010, 26(8), p 747–753

    Article  CAS  Google Scholar 

  11. B. Du, Z. Sun, X. Yang, L. Cui, J. Song, and Z. Zhang, Characteristics of Friction Plug Welding to 10 mm Thick AA2219-T87 Sheet: Weld Formation, Microstructure and Mechanical Property, Mater. Sci. Eng. A, 2016, 654, p 21–29

    Article  CAS  Google Scholar 

  12. B. Du, L. Cui, X. Yang, D. Wang, and Z. Sun, Weakening Mechanism and Tensile Fracture Behavior of AA 2219-T87 Friction Plug Welds, Mater. Sci. Eng. A, 2017, 693, p 129–135

    Article  CAS  Google Scholar 

  13. B. Han, Y.X. Huang, S.X. Lv, L. Wan, J.C. Feng, and G.S. Fu, AA7075 Bit for Repairing AA2219 Keyhole by Filling Friction Stir Welding, Mater. Des., 2013, 51, p 25–33

    Article  CAS  Google Scholar 

  14. Y.X. Huang, B. Han, S.X. Lv, J.C. Feng, H.J. Liu, J.S. Leng, and Y. Li, Interface Behaviours and Mechanical Properties of Filling Friction Stir Weld Joining AA 2219, Sci. Technol. Weld. Join., 2013, 17(3), p 225–230

    Article  Google Scholar 

  15. J. Osten, B. Milkereit, C. Schick, and O. Kessler, Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates, Materials, 2015, 8(5), p 2830–2848

    Article  CAS  Google Scholar 

  16. J.M. Papazian, A Calorimetric Study of Precipitation in Aluminum Alloy 2219, Metall. Trans. A, 1981, 12(2), p 269–280

    Article  CAS  Google Scholar 

  17. V.A. Phillips, High Resolution Electron Microscope Observations on Precipitation in Al-3.0% Cu Alloy, Acta Metall., 1975, 23(6), p 751–767

    Article  CAS  Google Scholar 

  18. T.J. Konno, M. Kawasaki, and K. Hiraga, Guinier-Preston Zones Observed by High-Angle Annular Detector Dark-Field Scanning Transmission Electron Microscopy, Philos. Mag. Part B, 2001, 81(11), p 1713–1724

    Article  CAS  Google Scholar 

  19. F. Ostermann, Anwendungstechnologie Aluminium, Springer, Berlin, 2007

    Google Scholar 

  20. M. Rosen, E. Horowitz, S. Fick, R.C. Reno, and R. Mehrabian, An Investigation of the Precipitation-Hardening Process in Aluminum Alloy 2219 by Means of Sound Wave Velocity and Ultrasonic Attenuation, Mater. Sci. Eng., 1982, 53(2), p 163–177

    Article  CAS  Google Scholar 

  21. Y.C. Chen, J.C. Feng, and H.J. Liu, Precipitate Evolution in Friction Stir Welding of 2219-T6 Aluminum Alloys, Mater. Charact., 2009, 60(6), p 476–481

    Article  CAS  Google Scholar 

  22. C.-Y. Lee, D.-H. Choi, W.-B. Lee, S.-K. Park, Y.-M. Yeon, and S.-B. Jung, Microstructures and Mechanical Properties of Double-Friction Stir Welded 2219 Al Alloy, Mater. Trans., 2008, 49(4), p 885–888

    Article  CAS  Google Scholar 

  23. X. Feng, H. Liu, and J.C. Lippold, Microstructure Characterization of the Stir Zone of Submerged Friction Stir Processed Aluminum Alloy 2219, Mater. Charact., 2013, 82, p 97–102

    Article  CAS  Google Scholar 

  24. X. Feng, H. Liu, and S. Suresh, Babu, Effect of Grain Size Refinement and Precipitation Reactions on Strengthening in Friction Stir Processed Al–Cu Alloys, Scripta Mater., 2011, 65(12), p 1057–1060

    Article  CAS  Google Scholar 

  25. H.R. Shercliff, M.J. Russell, A. Taylor, and T.L. Dickerson, Microstructural Modelling in Friction Stir Welding of 2000 Series Aluminium Alloys, Mech. Ind., 2005, 6(1), p 25–35

    Google Scholar 

  26. O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara, Modelling of the Microstructure and Strength Evolution in Al–Mg–Si Alloys During Multistage Thermal Processing, Acta Mater., 2004, 52(17), p 4997–5008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reimann.

Additional information

This article is an invited paper selected from presentations at “AeroMat 2017,” held April 10-12, 2017, in Charleston, South Carolina, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimann, M., Goebel, J. & dos Santos, J.F. Microstructure Evolution and Mechanical Properties of Keyhole Repair Welds in AA 2219-T851 Using Refill Friction Stir Spot Welding. J. of Materi Eng and Perform 27, 5220–5226 (2018). https://doi.org/10.1007/s11665-018-3519-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3519-z

Keywords

Navigation