Skip to main content
Log in

Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)–Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s−1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m−2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Lee, Fabrication of Ni–Nb–Ta Metallic Glass Reinforced Al-Based Alloy Matrix Composites by Infiltration Casting Process, Scr. Mater., 2004, 50, p 1367–1371. doi:10.1016/j.scriptamat.2004.02.038

    Article  Google Scholar 

  2. S. Scudino, G. Liu, K.G.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty et al., Mechanical Properties of Al-Based Metal Matrix Composites Reinforced with Zr-Based Glassy Particles Produced by Powder Metallurgy, Acta Mater., 2009, 57, p 2029–2039. doi:10.1016/j.actamat.2009.01.010

    Article  Google Scholar 

  3. S. Scudino, K.B. Surreddi, S. Sager, M. Sakaliyska, J.S. Kim, W. Löser et al., Production and Mechanical Properties of Metallic Glass-Reinforced Al-Based Metal Matrix Composites, J. Mater. Sci., 2008, 43, p 4518–4526. doi:10.1007/s10853-008-2647-5

    Article  Google Scholar 

  4. R. Zheng, H. Yang, T. Liu, K. Ameyama, and C. Ma, Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Fe-Based Metallic Glass Particles, Mater. Des., 2014, 53, p 512–518. doi:10.1016/j.matdes.2013.07.048

    Article  Google Scholar 

  5. D.V. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A.R. Yavari et al., Cu-Based Metallic Glass Particle Additions to Significantly Improve Overall Compressive Properties of an Al Alloy, Compos. Part A Appl. Sci. Manuf., 2010, 41, p 1551–1557. doi:10.1016/j.compositesa.2010.07.004

    Article  Google Scholar 

  6. S. Ozden, R. Ekici, and F. Nair, Investigation of Impact Behaviour of Aluminium Based SiC Particle Reinforced Metal-Matrix Composites, Compos. Part A Appl. Sci. Manuf., 2007, 38, p 484–494. doi:10.1016/j.compositesa.2006.02.026

    Article  Google Scholar 

  7. W.J. Kim and S.H. Lee, High-Temperature Deformation Behavior of Carbon Nanotube (CNT)-Reinforced Aluminum Composites and Prediction of Their High-Temperature Strength, Compos. Part A Appl. Sci. Manuf., 2014, 67, p 308–315. doi:10.1016/j.compositesa.2014.09.008

    Article  Google Scholar 

  8. S. Li, Y. Su, X. Zhu, H. Jin, Q. Ouyang, and D. Zhang, Enhanced Mechanical Behavior and Fabrication of Silicon Carbide Particles Covered by In-situ Carbon Nanotube Reinforced 6061 Aluminum Matrix Composites, Mater. Des., 2016, 107, p 130–138. doi:10.1016/j.matdes.2016.06.021

    Article  Google Scholar 

  9. Z. Xiong, L. Geng, and C.K. Yao, Investigation of High-Temperature Deformation Behavior of a SiC Whisker Reinforced 6061 Aluminium Composite, Compos. Sci. Technol., 1990, 39, p 117–125. doi:10.1016/0266-3538(90)90050-F

    Article  Google Scholar 

  10. H.S. Kim, On the Rule of Mixtures for the Hardness of Particle Reinforced Composites, Mater. Sci. Eng., A, 2000, 289, p 30–33. doi:10.1016/S0921-5093(00)00909-6

    Article  Google Scholar 

  11. R. Schaller, Metal Matrix Composites, a Smart Choice for High Damping Materials, J. Alloys Compd., 2003, 355, p 131–135. doi:10.1016/S0925-8388(03)00239-1

    Article  Google Scholar 

  12. C.R. Dandekar and Y.C. Shin, Effect of Porosity on the Interface Behavior of an Al2O3–Aluminum Composite: A Molecular Dynamics Study, Compos. Sci. Technol., 2011, 71, p 350–356

    Article  Google Scholar 

  13. C.R. Dandekar and Y.C. Shin, Molecular Dynamics Based Cohesive Zone Law for Describing Al-SiC Interface Mechanics, Compos. Part A Appl. Sci. Manuf., 2011, 42, p 355–363. doi:10.1016/j.compositesa.2010.12.005

    Article  Google Scholar 

  14. A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding, J. Appl. Mech., 1987, 54, p 525. doi:10.1115/1.3173064

    Article  Google Scholar 

  15. D.S. Dugdale, Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 1960, 8, p 100–104

    Article  Google Scholar 

  16. G.I. Barenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech., 1962, 7, p 55–129

    Article  Google Scholar 

  17. Z.H. Jin and C.T. Sun, Cohesive Zone Modeling of Interface Fracture in Elastic Bi-materials, Eng. Fract. Mech., 2005, 72, p 1805–1817. doi:10.1016/j.engfracmech.2004.09.011

    Article  Google Scholar 

  18. C.T. Sun and Z.H. Jin, Modeling of Composite Fracture Using Cohesive Zone and Bridging Models, Compos. Sci. Technol., 2006, 66, p 1297–1302. doi:10.1016/j.compscitech.2005.10.013

    Article  Google Scholar 

  19. D.E. Spearot, K.I. Jacob, and D.L. McDowell, Non-local Separation Constitutive Laws for Interfaces and Their Relation to Nanoscale Simulations, Mech. Mater., 2004, 36, p 825–847. doi:10.1016/j.mechmat.2003.08.002

    Article  Google Scholar 

  20. W.-P. Wu, N.-L. Li, and Y.-L. Li, Molecular Dynamics-Based Cohesive Zone Representation of Microstructure and Stress Evolutions of Nickel Intergranular Fracture Process: Effects of Temperature, Comput. Mater. Sci., 2016, 113, p 203–210. doi:10.1016/j.commatsci.2015.12.001

    Article  Google Scholar 

  21. A.P. Awasthi, D.C. Lagoudas, and D.C. Hammerand, Modeling of Graphene–Polymer Interfacial Mechanical Behavior Using Molecular Dynamics, Model. Simul. Mater. Sci. Eng., 2009, 17, p 15002. doi:10.1088/0965-0393/17/1/015002

    Article  Google Scholar 

  22. P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (Metal)–Cu50Zr50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50

    Article  Google Scholar 

  23. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117, 1–19 (1995). file:///D:/ash/aswin-new/files/715/Plimpton - 1995 - Fast Parallel Algorithms for Short-Range Molecular.pdf

  24. S. Plimpton, LAMMPS: Molecular Dynamics Simulator (2011), http://Lammps.sandia.gov/

  25. R. Komanduri, N. Chandrasekaran, and L.M. Raff, Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel, Int. J. Mech. Sci., 2001, 43, p 2237–2260. doi:10.1016/S0020-7403(01)00043-1

    Article  Google Scholar 

  26. Z.S. Pereira and E.Z. Da Silva, Cold Welding of Gold and Silver Nanowires: A Molecular Dynamics Study, J. Phys. Chem. C, 2011, 115, p 22870–22876

    Article  Google Scholar 

  27. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B, 2004, 69, p 144113

    Article  Google Scholar 

  28. L. Yang, G.-Q. Guo, L.-Y. Chen, S.-H. Wei, J.-Z. Jiang, and X.-D. Wang, Atomic Structure in Al-Doped Multicomponent Bulk Metallic Glass, Scr. Mater., 2010, 63, p 879–882

    Article  Google Scholar 

  29. K. Gall, M.F. Horstemeyer, M. Van Schilfgaarde, and M.I. Baskes, Atomistic Simulations on the Tensile Debonding of an Aluminum-Silicon Interface, J. Mech. Phys. Solids, 2000, 48, p 2183–2212. doi:10.1016/S0022-5096(99)00086-1

    Article  Google Scholar 

  30. S. Nosé, A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys., 1984, 52, p 255–268

    Article  Google Scholar 

  31. W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, 31, p 1695

    Article  Google Scholar 

  32. V.K. Sutrakar and D.R. Mahapatra, Effects of Isothermal and Adiabatic Thermal Loadings on Size and Strain Rate Dependence of Copper Nanowire, Def. Sci. J., 2009, 59, p 252

    Article  Google Scholar 

  33. J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic Simulations of the Yielding of Gold Nanowires, Acta Mater., 2006, 54, p 643–653

    Article  Google Scholar 

  34. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B Condens. Matter Mater. Phys., 1998, 58, p 11085–11088. doi:10.1103/PhysRevB.58.11085

    Article  Google Scholar 

  35. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18, p 15012. doi:10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  36. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20, p 85007

    Article  Google Scholar 

  37. L. Yuan, D. Shan, and B. Guo, Molecular Dynamics Simulation of Tensile Deformation of Nano-Single Crystal Aluminum, J. Mater. Process. Technol., 2007, 184, p 1–5. doi:10.1016/j.jmatprotec.2006.10.042

    Article  Google Scholar 

  38. S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72, p 85414

    Article  Google Scholar 

  39. P. Wang, W. Chou, A. Nie, Y. Huang, H. Yao, and H. Wang, Molecular Dynamics Simulation on Deformation Mechanisms in Body-Centered-Cubic Molybdenum Nanowires, J. Appl. Phys., 2011, 110, p 93521. doi:10.1063/1.3660251

    Article  Google Scholar 

  40. P. Yu, K.B. Kim, J. Das, F. Baier, W. Xu, and J. Eckert, Fabrication and Mechanical Properties of Ni–Nb Metallic Glass Particle-Reinforced Al-Based Metal Matrix Composite, Scr. Mater., 2006, 54, p 1445–1450. doi:10.1016/j.scriptamat.2006.01.001

    Article  Google Scholar 

  41. A.P. Divecha, S.G. Fishman, and S.D. Karmarkar, Silicon Carbide Reinforced Aluminum—A Formable Composite, JOM, 1981, 33, p 12–17

    Article  Google Scholar 

  42. Y. Zhou, W. Yang, M. Hu, and Z. Yang, The Typical Manners of Dynamic Crack Propagation Along the Metal/Ceramics Interfaces: A Molecular Dynamics Study, Comput. Mater. Sci., 2016, 112, p 27–33

    Article  Google Scholar 

  43. K.J. Zhao, C.Q. Chen, Y.P. Shen, and T.J. Lu, Molecular Dynamics Study on the Nano-Void Growth in Face-Centered Cubic Single Crystal Copper, Comput. Mater. Sci., 2009, 46, p 749–754

    Article  Google Scholar 

  44. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, Vol. 3, McGraw-hill, New York, 1986

    Google Scholar 

  45. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nat. Mater., 2002, 1, p 45–48. doi:10.1038/nmat700

    Article  Google Scholar 

  46. G. Sainath and B.K. Choudhary, Molecular Dynamics Simulation of Twin Boundary Effect on Deformation of Cu Nanopillars, Phys. Lett. A, 2015, 379, p 1902–1905. doi:10.1016/j.physleta.2015.05.027

    Article  Google Scholar 

  47. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation–Dislocation and Dislocation–Twin Reactions In Nanocrystalline Al by Molecular Dynamics Simulation, Acta Mater., 2003, 51, p 4135–4147. doi:10.1016/S1359-6454(03)00232-5

    Article  Google Scholar 

  48. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation Twinning in Nanocrystalline Aluminum, Science, 2003, 300, p 1275–1277. doi:10.1126/science.1083727

    Article  Google Scholar 

  49. T. Kadoyoshi, H. Kaburaki, F. Shimizu, H. Kimizuka, S. Jitsukawa, and J. Li, Molecular Dynamics Study on the Formation of Stacking Fault Tetrahedra and Unfaulting of Frank Loops in fcc Metals, Acta Mater., 2007, 55, p 3073–3080. doi:10.1016/j.actamat.2007.01.010

    Article  Google Scholar 

  50. E. Martínez, J. Marian, A. Arsenlis, M. Victoria, and J.M. Perlado, Atomistically Informed Dislocation Dynamics in fcc Crystals, J. Mech. Phys. Solids, 2008, 56, p 869–895. doi:10.1016/j.jmps.2007.06.014

    Article  Google Scholar 

  51. K. Sieradzki, A. Rinaldi, C. Friesen, and P. Peralta, Length Scales in Crystal Plasticity, Acta Mater., 2006, 54, p 4533–4538. doi:10.1016/j.actamat.2006.05.041

    Article  Google Scholar 

  52. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation, Phys. Rev. Lett., 2008, 100, p 1–4. doi:10.1103/PhysRevLett.100.025502

    Google Scholar 

  53. S.H. Oh, M. Legros, D. Kiener, and G. Dehm, In Situ Observation of Dislocation Nucleation and Escape in a Submicrometre Aluminium Single Crystal, Nat. Mater., 2009, 8, p 95–100. doi:10.1038/nmat2370

    Article  Google Scholar 

  54. P. Li, Y. Yang, X. Luo, N. Jin, G. Liu, and Z. Feng, Effect of Rate Dependence of Crack Propagation Processes on Amorphization in Al, Mater. Sci. Eng., A, 2017, 684, p 71–77

    Article  Google Scholar 

  55. S. Huang, S. Zhang, T. Belytschko, S.S. Terdalkar, and T. Zhu, Mechanics of Nanocrack: Fracture, Dislocation Emission, and Amorphization, J. Mech. Phys. Solids, 2009, 57, p 840–850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natraj Yedla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Yedla, N. Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature. J. of Materi Eng and Perform 26, 5694–5704 (2017). https://doi.org/10.1007/s11665-017-3026-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3026-7

Keywords

Navigation