Skip to main content
Log in

Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, Steels for Bearings, Prog. Mater. Sci., 2012, 57, p 268–435

    Article  Google Scholar 

  2. G.E. Hollox, R.A. Hobbs, and J.M. Hampshire, Lower Bainite Bearings for Adverse Environments, Wear, 1981, 68, p 229–240

    Article  Google Scholar 

  3. F.C. Zhang, Z.N. Yang, J.Z. Lei et al., Application Progress of Bainite Steel in Bearings, Bearings, 2017, 1, p 54–64

    Google Scholar 

  4. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella et al., Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279–284

    Article  Google Scholar 

  5. F.C. Zhang, T.S. Wang, P. Zhang et al., A Novel Method for the Development of a Low-temperature Bainitic Microstructure in the Surface Layer of Low-carbon Steel, Scripta Mater., 2008, 59, p 294–296

    Article  Google Scholar 

  6. P. Zhang, F.C. Zhang, Z.G. Yan et al., Rolling Contact Fatigue Property of Low-temperature Bainite in Surface Layer of a Low Carbon Steel, Mater. Sci. Forum, 2011, 675–677, p 585–588

    Article  Google Scholar 

  7. W. Solano-Alvarez, E.J. Pickering, and H.K.D.H. Bhadeshia, Degradation of Nanostructured Bainitic Steel Under Rolling Contact Fatigue, Mater. Sci. Eng. A, 2014, 617, p 156–164

    Article  Google Scholar 

  8. H.J. Liu, J.J. Sun, T. Jiang et al., Improved Rolling Contact Fatigue Life for an Ultrahigh-Carbon Steel with Nano Bainitic Microstructure, Scr. Mater., 2014, 90–91, p 17–20

    Article  Google Scholar 

  9. J. Zhao, T. Zhao, C.S. Hou et al., Improving Impact Toughness of High-C-Cr Bearing Steel by Si-Mo Alloying and Low-temperature Austempering, Mater. Des., 2015, 86, p 215–220

    Article  Google Scholar 

  10. J. Zhao, T.S. Wang, B. Lv et al., Microstructures and Mechanical Properties of a Modified High-C-Cr Bearing Steel with Nano-scaled Bainite, Mater. Sci. Eng. A, 2015, 628, p 327–331

    Article  Google Scholar 

  11. T. Sourmail and V. Smanio, Low Temperature Kinetics of Bainite Formation in High Carbon Steels, Acta Mater., 2013, 61, p 2639–2648

    Article  Google Scholar 

  12. H.L. Yi, H.L. Cai, Z.Y. Hou et al., Low Density Steel 1.2C-1.5Cr-5Al Designed for Bearings, Mater. Sci. Tech., 2014, 30, p 1045–1049

    Article  Google Scholar 

  13. Y.G. Li, C. Chen, and F.C. Zhang, Al and Si Influences on Hydrogen Embrittlement of Carbide-Free Bainitic Steel, Adv. Mater. Sci. Eng., 2013, 382, p 6–13

    Google Scholar 

  14. E.J. Song, H.K.D.H. Bhadeshia, and D.-W. Su, Interaction of Aluminium with Hydrogen in Twinning-Induced Plasticity Steel, Scripta Mater., 2014, 87, p 9–12

    Article  Google Scholar 

  15. M.K. Akben, T. Chandra, P. Plassiard et al., Dynamic Precipitation and Solute Hardening in a Titanium Microalloyed Steel Containing Three Levels of Manganese, Acta Metall., 1984, 32, p 591–601

    Article  Google Scholar 

  16. A.S. Hamada, L.P. Karjalainen, and M.C. Somani, The Influence of Aluminum on Hot Deformation Behavior and Tensile Properties of High-Mn TWIP Steels, Mater. Sci. Eng. A, 2007, 467, p 114–124

    Article  Google Scholar 

  17. P. Suikkanen, V.T.E. Lang, M.C. Somani et al., Effect of Silicon and Aluminium on Austenite Static Recrystallization Kinetics in High-Strength TRIP-Aided Steels, ISIJ Intern., 2012, 52, p 471–476

    Article  Google Scholar 

  18. H. Wang, W.Y. Liu, and Z.C. Ye, Effect of Aluminum Amount on the Hot Ductility of the Dual Phase Steel, Rare Metal Mater. Eng., 2007, 36, p 363–366

    Google Scholar 

  19. T. Sakai, A. Belyakov, R. Kaibyshev et al., Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207

    Article  Google Scholar 

  20. Z.N. Yang, F.C. Zhang, Y.Y. Xiao et al., Dynamic Recovery: The Explanation for Strain Softening Behaviour in Zr-2.3Nb Alloy, Scripta Mater., 2012, 67, p 959–962

    Article  Google Scholar 

  21. H.J. McQueen, S. Yue, N.D. Ryan, E. Fry. High-Temperature Deformation Properties of Austenitic Fe-Mn Alloys.J. Mater. Proc. Technol., 1995, 53, p 293–310.

    Article  Google Scholar 

  22. C.M. Sellars and W.J. McGTegart, Hot Workability, Int. Metall. Rev., 1972, 17, p 1–24

    Google Scholar 

  23. J.M. Cabrera, A. Al Omar, J.M. Prado et al., Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28, p 233–244

    Article  Google Scholar 

  24. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982

    Google Scholar 

  25. J.Q. Zhang, H.S. Di, X.Y. Wang et al., Constitutive Analysis of the Hot Deformation Behavior of Fe-23Mn-2Al-0.2C Twinning Induced Plasticity Steel in Consideration of Strain, Mater. Des., 2013, 44, p 354–364

    Article  Google Scholar 

  26. Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499, p 88–92

    Article  Google Scholar 

  27. J. Cai, F.G. Li, and T.Y. Liu, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4 V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151

    Article  Google Scholar 

  28. Z.N. Yang, Y.N. Li, Y.G. Li et al., Constitutive Modeling for Flow Behavior of Medium Carbon Bainitic Steel and Its Processing Maps, J. Mater. Eng. Perform., 2016, 25, p 5030–5039

    Article  Google Scholar 

  29. J. Luo, L. Li, and M.Q. Li, The Flow Behavior and Processing Maps During the Isothermal Compression of Ti17 Alloy, Mater. Sci. Eng. A, 2014, 606, p 165–174

    Article  Google Scholar 

  30. Z.N. Yang, F.C. Zhang, C.L. Zheng et al., Study on Hot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel, Mater. Des., 2015, 66, p 258–266

    Article  Google Scholar 

  31. E.X. Pu, W.J. Zheng, J.Z. Xiang et al., Hot Deformation Characteristic and Processing Map of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng. A, 2014, 598, p 174–182

    Article  Google Scholar 

  32. P.L. Xue, P.Q. La, H. Liu et al., Effect of Aluminium on High Temperature Tensile Property of 310S Heat-Resistant Steel, J. Iron Steel Res., 2015, 27, p 46–51

    Google Scholar 

  33. S.E. Kang, A. Tuling, J.R. Banerjee et al., Hot Ductility of TWIP Steels, Mater. Sci. Technol., 2011, 27, p 95–100

    Article  Google Scholar 

  34. Y.N. Wang, J. Yang, R.Z. Wang et al., Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents, Metall. Mater. Trans. B, 2016, 47B, p 1697–1712

    Article  Google Scholar 

  35. B. Steenken, J.L.L. Rezende, and D. Senk, Hot Ductility Behaviour of High Manganese Steels with Varying Aluminium Contents, Mater. Sci. Technol., 2017, 33, p 567–573

    Article  Google Scholar 

  36. N. Gao and T.N. Baker, Austenite Al-V-Ti-N Grain Growth Steels Behavior of Microalloyed Al-V-N and Al-V-Ti-N Steels, ISIJ Inter., 1998, 38(7), p 744–751

    Article  Google Scholar 

  37. G.Z. Quan, L. Zhao, T. Chen et al., Identification for the Optimal Working Parameters of As-Extruded 42CrMo High-Strength Steel from a Large Range of Strain, Strain Rate and Temperature, Mater. Sci. Eng. A, 2012, 538, p 364–373

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the funding support to this work from the National Natural Science Foundation of China (Grant Nos. 51601165, 51471146, and 51604241), the Natural Science Foundation of Hebei Province (Grant No. E2015203250) and the Young Teachers Program of Yanshan University (Grant No. 14LGA005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z.N., Dai, L.Q., Chu, C.H. et al. Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel. J. of Materi Eng and Perform 26, 5954–5962 (2017). https://doi.org/10.1007/s11665-017-3018-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3018-7

Keywords

Navigation