Skip to main content
Log in

Investigation of the Influence of Cr on the Microstructure and Properties of Ti6Al4VxCr Alloys with a Combinatorial Approach

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A combinatorial approach has been applied to investigate the influence of Cr on the microstructure and properties of Ti6Al4VxCr alloys. A diffusion couple was manufactured with Ti6Al4V and Ti6Al4V20Cr alloys and annealed at 1000 °C for 600 h to obtain a wide range of compositions. It was heated to 1050 °C (above β transus) for 6 h, quenched to room temperature and subsequently aged at 600 °C for 6 h to achieve the typical α + β two-phase microstructures. Combining electron probe microanalysis, scanning electron microscope and nanoindentation, the relationships between the composition and microstructure as well as hardness of the diffusion couple were determined. By calculating the volume fractions using Thermo-Calc, it was found that after aging the Ti6Al4V6Cr sample contained a reasonable (~57 vol%) content of fine α phase and showed peak hardness among the Ti6Al4VxCr alloys. HAADF-STEM and XRD revealed that after solution treatment above the β transus temperature and quenching, the metastable α″ lamellar formed in the Ti6Al4V6Cr alloy. Subsequent isothermal aging of the α″ lamellar became coarse acting as precursors/preferential nucleation sites for the stable α phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Leyens and M. Peters, Titanium and Titanium Alloys, Wiley, Weinheim, 2003

    Book  Google Scholar 

  2. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213, p 103–114

    Article  Google Scholar 

  3. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194

    Article  Google Scholar 

  4. S.L. Semiatin, P.N. Fagin, M.G. Glavicic, I.M. Sukonnik, and O.M. Ivasishin, Influence on Texture on Beta Grain Growth During Continuous Annealing of Ti-6Al-4V, Mater. Sci. Eng. A, 2001, 299, p 225–234

    Article  Google Scholar 

  5. S.L. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, and D. Dye, The Evolution of Microtexture and Macrotexture During Sub-Transus Forging of Ti-10V-2Fe-3Al, Mater. Sci. Eng. A, 2008, 488, p 8–15

    Article  Google Scholar 

  6. R. Santhosh, M. Geetha, V.K. Saxena, and M. Nageswararao, Studies on Single and Duplex Aging of Metastable Beta Titanium Alloy Ti-15V-3Cr-3Al-3Sn, J. Alloys Compd., 2014, 605, p 222–229

    Article  Google Scholar 

  7. N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye, β Phase Decomposition in Ti-5Al-5Mo-5V-3Cr, Acta Mater., 2009, 57, p 3830–3839

    Article  Google Scholar 

  8. V.T. Witusiewicz, A.A. Bondar, U. Hecht, and T.Y. Velikanova, Thermodynamic Re-Modelling of the Ternary Al-Cr-Ti System with Refined Al-Cr Description, J. Alloys Compd., 2015, 644, p 939–958

    Article  Google Scholar 

  9. M.J. Donachie, Titanium: a technical guide, Vol 126, 2nd ed., Metals Park, ASM International, 2000, p 15

    Google Scholar 

  10. D.O. Northwood, Effect of Metallurgical Condition on the Creep Behavior of Ti-13V-11Cr-3Al, J. Mater. Sci. Lett., 1987, 6, p 820–822

    Article  Google Scholar 

  11. N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye, Development of Chevron-Shaped α Precipitates in Ti-5Al-5Mo-5V-3Cr, Scr. Mater., 2009, 60, p 571–573

    Article  Google Scholar 

  12. X. Zhang, H.C. Kou, J.C. Li, F.S. Zhang, and L. Zhou, Evolution of the Secondary α Phase Morphologies During Isothermal Heat Treatment in Ti-7333 Alloy, J. Alloys Compd., 2013, 577, p 516–522

    Article  Google Scholar 

  13. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of Hot Deformation Behavior of Anew Near Beta Titanium Alloy: Ti-7333, Mater. Des., 2013, 49, p 945–952

    Article  Google Scholar 

  14. C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, and W.Q. Wang, Effect of Solution Temperature on Microstructures and Tensile Properties of High Strength Ti-6Cr-5Mo-5V-4Al Alloy, Mater. Sci. Eng. A, 2013, 578, p 103–109

    Article  Google Scholar 

  15. Z.X. Du, S.L. Xiao, L.J. Xu, J. Tian, F.T. Kong, and Y.Y. Chen, Effect of Heat Treatment on Microstructure and Mechanical Properties of a New β High Strength Titanium Alloy, Mater. Des., 2014, 55, p 183–190

    Article  Google Scholar 

  16. W.F. Ho, T.Y. Chiang, S.C. Wu, and H.C. Hsu, Mechanical Properties and Deformation Behavior of Cast Binary Ti-Cr Alloys, J. Alloys Compd., 2009, 468, p 533–538

    Article  Google Scholar 

  17. W.F. Ho, S.C. Wu, H.W. Wang, and H.C. Hsu, Effects of Cr Addition on Grindability of Cast Ti-10Zr Based Alloys, Mater. Chem. Phys., 2010, 121, p 465–471

    Article  Google Scholar 

  18. H.C. Hsu, S.C. Wu, S.K. Hsu, T.F. Lin, and W.F. Ho, Structure and Mechanical Properties of As-Cast Ti-5Nb-xCr Alloys, Mater. Des., 2013, 51, p 268–273

    Article  Google Scholar 

  19. D. Wu, L.G. Zhang, L.B. Liu, X. Shi, S.X. Huang, and Y. Jiang, Investigation of the Influence of Fe on the Microstructure and Properties of Ti5553 Near-β Titanium Alloy with Combinatorial Approach, Int. J. Mater. Res., 2017, 108, p 355–363

    Article  Google Scholar 

  20. J.C. Zhao, X. Zheng, and D.G. Cahill, High-Throughput Diffusion Multiples, Mater. Today, 2005, 12, p 28–37

    Article  Google Scholar 

  21. J.C. Zhao, The Diffusion-Multiple Approach to Designing Alloys, Annu. Rev. Mater. Res., 2005, 35, p 51–73

    Article  Google Scholar 

  22. J.C. Zhao, Combinatorial Approaches as Effective Tools in the Study of Phase Diagrams and Composition–Structure–Property Relationships, Prog. Mater. Sci., 2006, 51, p 557–631

    Article  Google Scholar 

  23. X.D. Zhang, L.B. Liu, J.C. Zhao, J.L. Wang, F. Zheng, and Z.P. Jin, High-Efficiency Combinatorial Approach as an Effective Tool for Accelerating Metallic Biomaterials Research and Discovery, Mater. Sci. Eng. C, 2014, 39, p 273–280

    Article  Google Scholar 

  24. X.G. Lu, N. Gui, A.T. Qiu, G.X. Wu, and C.H. Li, Thermodynamic Modeling of the Al-Ti-V Ternary System, Metall. Trans. A, 2014, 45A, p 4155–4164

    Article  Google Scholar 

  25. L.Y. Chen, A.T. Qiu, L.J. Liu, M. Jiang, X.G. Lu, and C.H. Li, Thermodynamic Modeling of the Ti-Al-Cr Ternary System, J. Alloys Compd., 2001, 509, p 1936–1946

    Article  Google Scholar 

  26. G. Ghosh, Thermodynamic and Kinetic Modeling of the Cr-Ti-V System, J. Phase Equilib., 2002, 23, p 310–328

    Article  Google Scholar 

  27. J.F. Smith, D.M. Bailey, and O.N. Carlson, The Cr-V (Chromium-Vanadium) System, Bull. Alloy Phase Diagr., 1982, 2, p 469–473

    Article  Google Scholar 

  28. Y. Liang, C. Guo, C. Li, and Z. Du, Thermodynamic Modeling of the Al-Cr System, J. Alloys Compd., 2008, 460, p 314–319

    Article  Google Scholar 

  29. J.L. Murray, AI-V (Aluminum-Vanadium), Bull. Alloy Phase Diagr., 1989, 10, p 351–357

    Article  Google Scholar 

  30. H.C. Hsu, S.C. Wu, S.K. Hsu, C.Y. Chen, and W.F. Ho, Structure and Mechanical Properties of As-Cast Ti-5Sn-xCr Alloys, Mater. Sci. Eng. A, 2014, 606, p 157–164

    Article  Google Scholar 

  31. H.C. Hsu, S.K. Hsu, S.C. Wu, C.J. Lee, and W.F. Ho, Structure and Mechanical Properties of As-Cast Ti-5Nb-xFe Alloys, Mater. Charact., 2001, 61, p 851–858

    Article  Google Scholar 

  32. A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee, and H.L. Fraser, Experimental Evidence of Concurrent Compositional and Structural Instabilities Leading to ω Precipitation in Titanium-Molybdenum Alloys, Acta Mater., 2012, 60, p 596–609

    Article  Google Scholar 

  33. S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, and H.L. Fraser, Non-classical Homogeneous Precipitation Mediated by Compositional Fluctuations in Titanium Alloys, Acta Mater., 2012, 60, p 6247–6256

    Article  Google Scholar 

  34. M. Ahmed, T. Li, G. Casillas, J.M. Cairney, D. Wexler, and E.V. Pereloma, The Evolution of Microstructure and Mechanical Properties of Ti-5Al-5Mo-5V-2Cr-1Fe During Ageing, J. Alloys Compd., 2015, 629, p 260–273

    Article  Google Scholar 

  35. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, ω-Assisted Nucleation and Growth of a Precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β Titanium Alloy, Acta Mater., 2009, 57, p 2136–2147

    Article  Google Scholar 

  36. Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, Effects of ω-Phase Precipitation on β→α, α″ Transformations in a Metastable β Titanium Alloy, Mater. Sci. Eng. A, 2001, 312, p 182–188

    Article  Google Scholar 

  37. Z. Guo, A.P. Miodownik, N. Saunders, and J.-P. Schille, Influence of Stacking-Fault Energy on High Temperature Creep of Alpha Titanium Alloys, Scr. Mater., 2006, 54, p 2175–2178

    Article  Google Scholar 

  38. T. Furuhara, S. Takagi, H. Watanabe, and T. Maki, Crystallography of Grain Boundary α Precipitates in a β Titanium Alloy, Metall. Mater. Trans. A, 1996, 27, p 1635–1646

    Article  Google Scholar 

  39. R. Salloom, R. Banerjee, and S.G. Srinivasan, Effect of β-Stabilizer Elements on Stacking Faults Energies and Ductility of α-Titanium Using First-Principles Calculations, J. Appl. Phys., 2016, 120, p 3011–3021

    Article  Google Scholar 

  40. S. Zherebtsov, G. Salishchev, and S.L. Semiatin, Loss of Coherency of the Alpha/Beta Interface Boundary in Titanium Alloys During Deformation, Philos. Mag. Lett., 2010, 90, p 903–914

    Article  Google Scholar 

  41. D. Bhattacharyya, G.B. Viswanathan, and H.L. Fraser, Crystallographic and Morphological Relationships Between β Phase and the Widmanstatten and Allotriomorphic α Phase at Special β Grain Boundaries in an α/β Titanium Alloy, Acta Mater., 2007, 55, p 6765–6778

    Article  Google Scholar 

  42. D.Y. Qin, Y.F. Lu, D.Z. Guo, L. Zheng, Q. Liu, and L. Zhou, Tensile Deformation and Fracture of Ti-5Al-5V-5Mo-3Cr-1.5Zr-0.5Fe Alloy at Room Temperature, Mater. Sci. Eng. A, 2013, 587, p 100–109

    Article  Google Scholar 

  43. S.L. Nyakana, J.C. Fanning, and R.R. Boyer, Quick Reference Guide for β Titanium Alloys in the 00s, J. Mater. Eng. Perform., 2005, 14, p 799–811

    Article  Google Scholar 

  44. N. Wain, X.J. Hao, G.A. Ravi, and X. Wu, The Influence of carbon on Precipitation of α in Ti-5Al-5Mo-5V-3Cr, Mater. Sci. Eng. A, 2010, 527, p 7673–7683

    Article  Google Scholar 

  45. S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee, Quantitative Microstructural Characterization of a Near Beta Ti Alloy, Ti-5553 Under Different Processing Conditions, Mater. Charact., 2013, 81, p 37–48

    Article  Google Scholar 

  46. K. Hua, X.Y. Xue, H.C. Kou, J.K. Fan, B. Tang, and J.S. Li, Characterization of Hot Deformation Microstructure of a Near Beta Titanium Alloy Ti-5553, J. Alloys Compd., 2014, 615, p 531–537

    Article  Google Scholar 

  47. G. Neumann and C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier Science, London, 2011

    Google Scholar 

Download references

Acknowledgments

The work was financially supported by National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000), National Key Technologies R&D Program of China (Grant no. 2016YFB0701301), National Natural Science Foundation of China (Grant Nos. 51671218) and State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China. Thanks to Dr. Shaun Dorey for English improvement (University of Salford).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. B. Liu or L. G. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Liu, L.B., Zhang, L.G. et al. Investigation of the Influence of Cr on the Microstructure and Properties of Ti6Al4VxCr Alloys with a Combinatorial Approach. J. of Materi Eng and Perform 26, 4364–4372 (2017). https://doi.org/10.1007/s11665-017-2822-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2822-4

Keywords

Navigation