Skip to main content
Log in

Metallurgical Aspects of Self-lubricating Composites Containing Graphite and MoS2

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The performance of dry self-lubricating bulk materials is directly related to microstructural aspects such as solid lubricant chemical composition and distribution. In this paper, dry powder mixtures were prepared from iron powder and 9-16.5 vol.% of solid lubricants (graphite and MoS2), both combined and isolated. The results showed that interactions and reactions occurred during processing, either between the solid lubricants or between the lubricants and the matrix, generating carbides and sulfides. On account of that, the lubricant distribution in the microstructure is greatly altered, and the microhardness, friction coefficient and wear rate are increased. The best results were achieved by adequate powder particle size, solid lubricant content and sintering temperature control. In the composite containing 9%MoS2 + 2.5%C, values of friction coefficient and wear rate lower than 0.08 and 8 × 10−6 mm3 N−1 m−1 were reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C. Donnet and A. Erdemir, Historical Developments and New Trends in Tribological and Solid Lubricant Coatings, Surface and Coatings Technology, 2004, 180–181, p 76–84

    Article  Google Scholar 

  2. A. Erdemir, Review of Engineered Tribological Interfaces for Improved Boundary Lubrication, Tribology International, 2005, 38(3), p 249–256

    Article  Google Scholar 

  3. D.A. Lelonis, J.W. Tereshko, and C.M. Andersen, Boron Nitride Powder a High-Performance Alternative for Solid Lubrication, Momentive Performance Materials Inc., New York, 2006

    Google Scholar 

  4. J.P.G. Farr, Molybdenum Disulphide in Lubrication. A Review, Wear, 1975, 35(1), p 1–22

    Article  Google Scholar 

  5. K.R. Campos, P. Kapsa, C. Binder, A.N. Klein, and J.D.B. de Mello, Tribological Evaluation of Self-lubricating Sintered Steels, Wear, 2015, 332, p 932–940

    Article  Google Scholar 

  6. J.D.B. de Mello, C. Binder, G. Hammes, and A.N. Klein, Effect of the Metallic Matrix on the Sliding Wear of Plasma Assisted Debinded and Sintered MIM Self-lubricating Steel, Wear, 2013, 301(1–2), p 648–655

    Article  Google Scholar 

  7. R. Schroeder, A.N. Klein, C. Binder, and J.D.B. de Mello, Internal Lubricant as an Alternative to Coating Steels, Met. Powder Rep., 2010, 65(7), p 24–31

    Article  Google Scholar 

  8. B.S. Ünlü, Tribological and Mechanical Properties of PM Journal Bearings, Powder Metal., 2011, 54(3), p 338–342

    Article  Google Scholar 

  9. V.V. Merie, V.C. Cândea, and C.O. Popa, The Influence of Nickel Content on the Properties of Fe-based Friction Composite Materials, Metal. Int., 2011, 16(4), p 93–96

    Google Scholar 

  10. S.S. Yilmaz, B.S. Ünlü, and R. Varol, Effect of Boronizing and Shot Peening in Ferrous Based FeCu–Graphite Powder Metallurgy Material on Wear, Microstructure and Mechanical Properties, Mater. Des., 2010, 31(9), p 4496–4501

    Article  Google Scholar 

  11. S. Dhanasekaran and R. Gnanamoorthy, Microstructure, Strength and Tribological Behavior of Fe–C–Cu–Ni Sintered Steels Prepared with MoS2 Addition, J. Mater. Sci., 2007, 42(12), p 4659–4666 ((in English))

    Article  Google Scholar 

  12. Y. Watanabe, Sliding Contact Characteristics Between Composite-Materials Containing Layered Solid Lubricants and Carbon, Wear, 1992, 155(2), p 237–249

    Article  Google Scholar 

  13. X.H. Zhang, J.J. Liu, and B.L. Zhu, The Tribological Performance of Ni/MoS2 Composite Brush-Plating Layer in Vacuum, Wear, 1992, 157(2), p 381–387

    Article  Google Scholar 

  14. B. Dubrujeaud, M. Vardavoulias, and M. Jeandin, The Role of Porosity in the Dry Sliding Wear of a Sintered Ferrous Alloy, Wear, 1994, 174(1–2), p 155–161

    Article  Google Scholar 

  15. M. Chandrasekaran and P. Singh, Sintered Iron-Based Antifriction Materials with Added Beta-SiC, Wear, 1997, 206(1–2), p 1–7 ((in English))

    Article  Google Scholar 

  16. Y.X. Wu, F.X. Wang, Y.Q. Cheng, and N.P. Chen, A Study of the Optimization Mechanism of Solid Lubricant Concentration in Ni/MoS2 Self-lubricating Composite, Wear, 1997, 205(1–2), p 64–70

    Article  Google Scholar 

  17. M. Chandrasekaran and P. Singh, Sintered Iron–Copper–Tin–Lead Antifriction Materials—Effect of Temperature, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2000, 292(1), p 26–33 ((in English))

    Article  Google Scholar 

  18. G. Straelini and A. Molinari, Dry Sliding Wear of Ferrous PM Materials, Powder Metal., 2001, 44(3), p 248–252

    Article  Google Scholar 

  19. S. Dhanasekaran and R. Gnanamoorthy, Dry Sliding Friction and Wear Characteristics of Fe–C–Cu Alloy Containing Molybdenum di Sulphide, Materials & Design, 2007, 28(4), p 1135–1141

    Article  Google Scholar 

  20. S. Dhanasekaran and R. Gnanamoorthy, Gear Tooth Wear in Sintered Spur Gears under Dry Running Conditions, Wear, 2008, 265(1–2), p 81–87

    Article  Google Scholar 

  21. J.L. Li, D.S. Xiong, and M.F. Huo, Friction and Wear Properties of Ni–Cr–W–Al–Ti–MoS2 at Elevated Temperatures and Self-consumption Phenomena, Wear, 2008, 265(3–4), p 566–575

    Article  Google Scholar 

  22. Y. Watanabe, High-Speed Sliding Characteristics of Cu-Sn-based Composite Materials Containing Lamellar Solid Lubricants by Contact Resistance Studies, Wear, 2008, 264(7–8), p 624–631

    Article  Google Scholar 

  23. M. Xue, High Temperature Oxidation and Wear Behaviour of Powder Metallurgically Developed Ni–Cr–W–Al–Ti–MoS2 Composite, Indian J. Eng. Mat. Sci., 2009, 16(2), p 111–115

    Google Scholar 

  24. A.G. Kostornov, O.I. Fushchich, V.F. Gorban, T.M. Chevychelova, M.V. Karpets, and A.Y. Koval, Service Properties of Cu–Sn–CuWO4–MoS2 Composite and Micromechanical Characteristics of its Friction Surface, Powder Metall. Met. Ceram., 2011, 49(11–12), p 647–653

    Article  Google Scholar 

  25. C. Teisanu and S. Gheorghe, Development of New PM Iron-Based Materials for Self-Lubricating Bearings, Adv. Tribol., 2011, 2011, p 11

    Article  Google Scholar 

  26. S.A. Alidokht, A. Abdollah-Zadeh, and H. Assadi, Effect of Applied Load on the Dry Sliding Wear Behaviour and the Subsurface Deformation on Hybrid Metal Matrix Composite, Wear, 2013, 305(1–2), p 291–298

    Article  Google Scholar 

  27. I.N. Popescu, C. Ghita, V. Bratu, and G.P. Navarro, Tribological Behaviour and Statistical Experimental Design of Sintered Iron–Copper Based Composites, Appl. Surf. Sci., 2013, 285, p 72–85

    Article  Google Scholar 

  28. B. Juszczyk, J. Kulasa, S. Malara, M. Czepelak, W. Malec, B. Cwolek, and L. Wierzbicki, Tribological Properties of Copper-Based Composites with Lubricating Phase Particles, Arch. Metall. Mater., 2014, 59(2), p 615–620

    Google Scholar 

  29. X. Shi, W. Zhai, M. Wang, Z. Xu, J. Yao, S. Song, and Y. Wang, Tribological Behaviors of NiAl Based Self-lubricating Composites Containing Different Solid Lubricants at Elevated Temperatures, Wear, 2014, 310(1–2), p 1–11

    Article  Google Scholar 

  30. X. Shi, W. Zhai, Z. Xu, M. Wang, J. Yao, S. Song, and Y. Wang, Synergetic Lubricating Effect of MoS2 and Ti3SiC2 on Tribological Properties of NiAl Matrix Self-Lubricating Composites Over a Wide Temperature Range, Materials & Design, 2014, 55, p 93–103

    Article  Google Scholar 

  31. Z. Xu, X. Shi, Q. Zhang, W. Zhai, X. Li, J. Yao, L. Chen, Q. Zhu, and Y. Xiaov, Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites, Tribol. Lett., 2014, 55(3), p 393–404

    Article  Google Scholar 

  32. S.-X. Chen, Y. Feng, S. Li, and Y.-J. Xie, Influences of MoS2 Contents on Sintering Process and Properties of Cu-MoS2 Composites, J. Mater. Sci. Eng., 2008, 2(12), p 7–12

    Google Scholar 

  33. A.M. Kovalchenko, O.I. Fushchich, and S. Danyluk, The Tribological Properties and Mechanism of Wear of Cu-based Sintered Powder Materials Containing Molybdenum Disulfide and Molybdenum Diselenite Under Unlubricated Sliding Against Copper, Wear, 2012, 290, p 106–123

    Article  Google Scholar 

  34. A.G. Kostornov, O.I. Fushchich, T.M. Chevychelova, and O.D. Kostenko, Sintering of Cu–Sn–P–MoS2 Powder Samples at 780 °C, Powder Metall. Met. Ceram., 2014, 52(11–12), p 651–655

    Article  Google Scholar 

  35. D.S. Xiong, Lubrication Behavior of Ni–Cr-Based Alloys Containing MoS2 at High Temperature, Wear, 2001, 251(1–12), p 1094–1099

    Google Scholar 

  36. J.L. Li and D.S. Xiong, Tribological Properties of Nickel-Based Self-Lubricating Composite at Elevated Temperature and Counterface Material Selection, Wear, 2008, 265(3–4), p 533–539

    Article  Google Scholar 

  37. I.G. Slys’, A.V. Perepelkin, and I.M. Fedorchenko, Structure and Properties of Sintered Stainless Steel Containing Molybdenum Disulfide, Powder Metall. Met. Ceram., 1973, 12(9), p 710–714

    Article  Google Scholar 

  38. S. Raadnui, S. Mahathanabodee, and R. Tongsri, Tribological Behaviour of Sintered 316L Stainless Steel Impregnated with MoS2 Plain Bearing, Wear, 2008, 265(3–4), p 546–553

    Article  Google Scholar 

  39. C. Binder, G. Hammes, R. Schroeder, A.N. Klein, J.D.B. de Mello, R. Binder, and W.R. Junior, ‘Fine tuned’ Steels Point the Way to a Focused Future, Met. Powder Rep., 2010, 65(4), p 29–37

    Article  Google Scholar 

  40. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer Science & Business Media, Berlin, 2013

    Google Scholar 

  41. C.J. Smithells, Metals Reference Book, 5th ed., Butterworths, London, 1976, p XIV, 1566

    Google Scholar 

  42. Introduction to Quantitative Metallography. http://vacaero.com/information-resources/metallography-with-george-vander-voort/1136-introduction-to-quantitative-metallography.html. Accessed 23-Sept-2015

  43. K.P. Furlan, J.Z. de Assunção, G. Paz, C. Binder, and A.N. Klein, Sintering Studies and Microstructural Evolution of Fe-MoS2 Mixtures, Mater. Res., 2014, 802, p 415–420

    Google Scholar 

  44. K.P. Furlan, C. Binder, A.N. Klein, and J.D.B. de Mello, Thermal Stability of the MoS2 Phase in Injection Moulded 17-4 PH Stainless Steel, J. Mater. Res. Technol., 2012, 1, p 134–140

    Article  Google Scholar 

  45. S.C. Lim, M. Gupta, and W.B. Ng, Friction and Wear Characteristics of Al–Cu/C Composites Synthesized using Partial Liquid Phase Casting Process, Mater. Des., 1997, 18(3), p 161–166

    Article  Google Scholar 

  46. R.M. German, Powder Metallurgy of Iron and Steel, Wiley, New York, 1998

    Google Scholar 

  47. N. Ohmae, Influence of Atomic Oxygen on Space Tribology in a Low-Earth-Orbit, Wear, 1993, 168(1–2), p 99–103

    Article  Google Scholar 

  48. A. Erdemir, Solid Lubricants and Self-Lubricating Films, Modern Tribology Handbook, v. 2 - Materials, Coating, and Industrial Applications, 2nd ed., B. Bhushan, Ed., CRC Press, 2001

  49. J.K. Lancaster, A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear, Tribol. Int., 1990, 23(6), p 371–389

    Article  Google Scholar 

Download references

Acknowledgments

The present work was developed with financial aid from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil) Grant No. 163569/2014-2, Whirlpool and BNDES. Special thanks to Höganäs Brazil for powder’s donations. Research was supported by LCME-UFSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaline Pagnan Furlan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlan, K.P., da Costa Gonçalves, P., Consoni, D.R. et al. Metallurgical Aspects of Self-lubricating Composites Containing Graphite and MoS2 . J. of Materi Eng and Perform 26, 1135–1145 (2017). https://doi.org/10.1007/s11665-017-2563-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2563-4

Keywords

Navigation