Skip to main content

Advertisement

Log in

Fabrication of a 2014Al-SiC/2014Al Sandwich Structure Composite with Good Tensile Strength and Ductility

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A sandwich structure laminate composed of a ductile 2014Al inter-layer and two nanoscale SiC reinforced 2014Al (SiC/2014Al) composite outer layers was successfully fabricated through the combination of powder metallurgy and hot rolling. The ductile 2014Al inter-layer effectively improved the processability of the sandwiched laminates. Tensile test revealed that the yield strength and ultimate tensile strength of the sandwiched laminate were 287 and 470 MPa, respectively, compared with 235 and 425 MPa for monolithic 2014Al. The good performance of the sandwiched laminate results from the strong bonding between the SiC/2014Al composites layer and the ductile 2014Al layer. Thus, the sandwich structure with a composite surface and ductile core is effective for increasing the strength and toughness of composite laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.J. Huang, L. Geng, and H.X. Peng, Microstructurally Inhomogeneous Composites: Is a Homogeneous Reinforcement Distribution Optimal?, Prog. Mater. Sci., 2015, 71, p 93–168

    Article  Google Scholar 

  2. A. Hosseini Monazzah, R. Bagheri, and S.M. Seyed Reihani, Toughness Enhancement in Roll-Bonded Al6061-15 vol.% SiC Laminates via Controlled Interfacial Delamination, J. Mater. Eng. Perform., 2013, 22, p 3414–3420

    Article  Google Scholar 

  3. H.R. Hafizpour and A. Simchi, Investigation on Compressibility of Al-SiC Composite Powders, Powder Metall., 2008, 51(3), p 217–223

    Article  Google Scholar 

  4. K. Soma Raju, V.V. Bhanu Prasad, G.B. Rudrakshi, and S.N. Ojha, PM Processing of Al-Al2O3 Composites and Their Characterisation, Powder Metall., 2003, 46(3), p 219–223

    Article  Google Scholar 

  5. I. Sinclai and P.J. Gregson, Structural Performance of Discontinuous Metal Matrix, Mater. Sci. Technol., 1997, 13, p 709–726

    Article  Google Scholar 

  6. A. Hosseini Monazzah, H. Pouraliakbar, R. Bagheri, and S.M. Seyed Reihani, Toughness Behavior in Roll-Bonded Laminates Based on AA6061/SiCp Composites, Mater. Sci. Eng. A, 2014, 598, p 162–173

    Article  Google Scholar 

  7. T.M. Osman, P.M. Singh, and J.J. Lewandowski, Crack Bridging in a Laminated Metal Matrix Composite, Scr. Metall. Mater., 1994, 31(5), p 607–612

    Article  Google Scholar 

  8. A.B. Pandey, B.S. Majumdar, and D.B. Miracle, Laminated Particulate-Reinforced Aluminum Composites with Improved Toughness, Acta Mater., 2001, 49, p 405–417

    Article  Google Scholar 

  9. F. Liu, Y. Jiang, D. Lu, H. Xiao, and J. Tan, Microstructure Evolution and Impact Toughness of Sandwich Structured Composite Prepared by Centrifugal Casting and Hot Rolling Process, Mater. Sci. Technol., 2015, 31(3), p 295–302

    Article  Google Scholar 

  10. X.-P. Zhang, L. Ye, Y.-W. Mai, G.-F. Quan, and W. Wei, Investigation on Diffusion Bonding Characteristics of SiC Particulate Reinforced Aluminium Metal Matrix Composites (Al/SiCp-MMC), Compos. Part A, 1999, 30(12), p 1415–1421

    Article  Google Scholar 

  11. F.M. Xu, S.J. Zhu, J. Zhao, M. Qi, F.G. Wang, S.X. Li, and Z.G. Wang, Effect of Stress Ratio on Fatigue Crack Propagation in a Functionally Graded Metal Matrix Composite, Compos. Sci. Technol., 2004, 64(12), p 1795–1803

    Article  Google Scholar 

  12. A. Hosseini Monazzah, R. Bagheri, and S.M. Seyed Reihani, Investigating the Effect of Rolling Strain on Fracture Behavior of Roll Bonded Al6061 Laminates Under Quasi-Static and Dynamic Loading, Mater. Sci. Eng. A, 2012, 558, p 82–89

    Article  Google Scholar 

  13. C.M. Cepeda-Jiménez, M. Pozuelo, O.A. Ruano, and F. Carreño, Influence of the Thermomechanical Processing on the Fracture Mechanisms of High Strength Aluminium/Pure Aluminium Multilayer Laminate Materials, Mater. Sci. Eng. A, 2008, 490(1–2), p 319–327

    Article  Google Scholar 

  14. H. Pouraliakbar, A.H. Monazzah, R. Bagheri, S.M. Seyed Reihani, G. Khalaj, A. Nazari, and M.R. Jandaghi, Toughness Prediction in Functionally Graded Al6061/SiCp Composites Produced by Roll-Bonding, Ceram. Int., 2014, 40(6), p 8809–8825

    Article  Google Scholar 

  15. C.M. Cepeda-Jiménez, P. Hidalgo, M. Pozuelo, O.A. Ruano, and F. Carreño, Influence of Constituent Materials on the Impact Toughness and Fracture Mechanisms of Hot-Roll-Bonded Aluminum Multilayer Laminates, Metall. Mater. Trans. A, 2009, 41(1), p 61–72

    Article  Google Scholar 

  16. L. Meng, L. Zhang, S.P. Zhou, and F.T. Yang, Effects of Rolling and Sintering Temperature on Peel Strength of Bonding Interfaces for Ag/Cu Bimetallic Strips, Mater. Sci. Technol., 2003, 19(6), p 779–784

    Article  Google Scholar 

  17. M.Z. Quadir, A. Wolz, M. Hoffman, and M. Ferry, Influence of Processing Parameters on the Bond Toughness of Roll-Bonded Aluminium Strip, Scr. Mater., 2008, 58(11), p 959–962

    Article  Google Scholar 

  18. G.P. Chaudhari and V. Acoff, Cold Roll Bonding of Multi-Layered Bi-Metal Laminate Composites, Compos. Sci. Technol., 2009, 69(10), p 1667–1675

    Article  Google Scholar 

  19. X. Zhu, Y.G. Zhao, M. Wu, H.Y. Wang, and Q.C. Jiang, Effect of Initial Aluminum Alloy Particle Size on the Damage of Carbon Nanotubes During Ball Milling, Materials, 2016, 9(3), p 173

    Article  Google Scholar 

  20. B.X. Liu, L.J. Huangn, L. Geng, B. Wang, X.P. Cui, C. Liu, and G.S. Wang, Microstructure and Tensile Behavior of Novel Laminated Ti-TiBw/Ti Composites by Reaction Hot Pressing, Mater. Sci. Eng. A, 2013, 583, p 182–187

    Article  Google Scholar 

  21. Y.-C. Kang and S.L.-I. Chan, Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites, Mater. Chem. Phys., 2004, 85(2–3), p 438–443

    Article  Google Scholar 

  22. C. Jeong, T. Oya, and J. Yanagimoto, Analysis of Fracture Behavior and Stress–Strain Distribution of Martensite/Austenite Multilayered Metallic Sheet, J. Mater. Process. Technol., 2013, 213(4), p 614–620

    Article  Google Scholar 

Download references

Acknowledgment

Financial support from the National Basic Research Program of China (973 Program, No. 2012CB619600), the Natural Science Foundation of China (No. 51474111) and the Science and Technology Development Project of Jilin Province is greatly acknowledged. Partial financial support was also received from the Fundamental Research Funds for the Central Universities (JCKY-QKJC02) and the Foundation of Jilin University for Distinguished Young Scholars (2013014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhao, YG., Wang, HY. et al. Fabrication of a 2014Al-SiC/2014Al Sandwich Structure Composite with Good Tensile Strength and Ductility. J. of Materi Eng and Perform 25, 5007–5013 (2016). https://doi.org/10.1007/s11665-016-2308-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2308-9

Keywords

Navigation