Skip to main content
Log in

Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

An Erratum to this article was published on 26 September 2016

Abstract

Four medium carbon and low-alloy steels were hardened through oil and forced air cooling. Tempering was then performed in the temperature range 250-600 °C. The martensite content increased with an increased hardenability and/or the rate of cooling. Tempering at T > M s caused a gradual decline in both hardness and strength and an improvement in the Charpy V-notch impact toughness. The low-alloy steels underwent tempered martensite embrittlement (as a result of the formation of carbides at the martensite interlaths and prior austenite grain boundaries) and enhancement of phosphorus segregation (particularly in the presence of Ni). Higher hardenability steels were found to be better hardened via the more recent forced air quenching rather than the conventional oil quenching. In this work, a modest, novel attempt is presented to empirically correlate the impact toughness with the hardness measurements to enable future prediction of impact toughness from hardness measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ASM Handbook Committee et al., Classification and designation of carbon and low-alloy steels, ASM handbook, Properties and Selection: Irons, Steels, High-Performance Alloys, Vol 1, 10th ed., K.M. Zwilsky, Ed., ASM International, Materials Park, 1991, p 140–194

    Google Scholar 

  2. W.D. Callister, Materials Science and Engineering: An Introduction, 7th ed., Wiley, New York, 2007, p 311–315

    Google Scholar 

  3. C.E. Bates, G.E. Totten, R.L. Brennan et al., Heat treating, Heat Treating, Vol 4, 10th ed., S.M. Copley, Ed., ASM International, Materials Park, 1990, p 67

    Google Scholar 

  4. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill, Physical Metallurgy Principles, 4th ed., Cengage Learning, Connecticut, 2009, p 562

    Google Scholar 

  5. Z. Altagoury, M.T. Abdu, M.A. Adly, and A. Elhabak, Electrolytic Surface Hardening of DIN 42CrMo4 (AISI, 4140) Medium Carbon Low Alloy Steel, Int. J. Adv. Eng. Technol. Comput. Sci. (IJAETCS), 2014, 1, p 20–27

    Google Scholar 

  6. Y. Lu, A Study on Gas Quench Steel Hardenability, M.S. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2015.

  7. ASTM A255-10(2014), Standard Test Methods for Determining Hardenability of Steel, ASTM International, West Conshohocken, PA, 2014.

  8. ASTM E140-12be1, Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness, ASTM International, West Conshohocken, PA, 2012.

  9. M. Gojic, L. Kosec, and P. Matkovic, The Effect of Tempering Temperature on Mechanical Properties and Microstructure of Low Alloy Cr and CrMo Steel, J. Mater. Sci., 1998, 33, p 395–403

    Article  Google Scholar 

  10. W.S. Lee and T.T. Su, Mechanical Properties and Microstructural Features of AISI 4340 High-Strength Alloy Steel Under Quenched and Tempered Conditions, J. Mater. Process. Technol., 1999, 87, p 198–206

    Article  Google Scholar 

  11. G. Krauss, Tempering of martensite, Encyclopedia of Materials Science and Technology, 2nd ed., Elsevier, New York, 2001, p 9093–9097

    Chapter  Google Scholar 

  12. G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng. A, 1999, 273–275A, p 40–57

    Article  Google Scholar 

  13. D. Chaouch, S. Guessasma, and A. Sadok, Finite Element Simulation Coupled to Optimisation Stochastic Process to Assess the Effect of Heat Treatment on the Mechanical Properties of 42CrMo4 Steel, Mater. Des., 2012, 34, p 679–684

    Article  Google Scholar 

  14. W.J. Nam, D.S. Kim, and S.T. Ahn, Effect of Alloying Elements on Microstructural Evolution and Mechanical Properties of Induction Quenched-and-Tempered Steels, J. Mater. Sci., 2003, 38, p 3611–3618

    Article  Google Scholar 

  15. R. Honeycombe and H.K.D.H. Bhadeshia, Steels: Microstructure and Properties, 2nd ed., Edward Armold, London, 1996

    Google Scholar 

  16. T.V. Rajan, C.P. Shama, and A. Sharama, Heat Treatment Principles and Techniques, Prentice-Hall of India private Ltd., New Delhi, 1998

    Google Scholar 

  17. G.F. Vander Voort, Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, Ohio, 1991

    Google Scholar 

  18. D.R. Askeland and P.P. Fulay, Essentials of Materials Science and Engineering, 2nd ed., Cengage Learning, Ontario, 2009, p 391

    Google Scholar 

  19. B.A. Miller et al., Overload failures, ASM Handbook, Failure Analysis and Prevention, Vol 11, 10th ed., G.H. Geiger, Ed., ASM International, Materials Park, 1954,

    Google Scholar 

  20. R.M. Horn and R.O. Ritchie, Mechanisms of Tempered Martensite Embrittlement in Low Alloy Steels, Metall. Trans. A, 1978, 9, p 1039–1053

    Article  Google Scholar 

  21. S. Raoul, B. Marini, and A. Pineau, Effect of Microstructure on the Susceptibility of A533 Steel to Temper Embrittlement, J. Nucl. Mater., 1998, 257, p 199–205

    Article  Google Scholar 

  22. A.K. Sinha, Physical Metallurgy Handbook, 1st ed., McGraw Hill, New York, 2003

    Google Scholar 

  23. K.B. Lee, S.H. Yoon, and H. Kwon, On the Transgranular Type of Tempered Martensite Embrittlement, Scr. Metall. Mater., 1994, 30, p 1111–1115

    Article  Google Scholar 

  24. G. Thomas, Retained Austenite and Tempered Martensite Embrittlement, Metall. Mater. Trans. A, 1978, 9, p 439–450

    Article  Google Scholar 

  25. H. Kwon and C.H. Kim, Tempered Martensite Embrittlement in Fe-Mo-C and Fe-W-C Steel, Metall. Mater. Trans. A, 1983, 14, p 1389–1394

    Article  Google Scholar 

  26. H.K.D.H. Bhadeshia and D.V. Emonds, Tempered Martensite Embrittlement: Role of Retained Austenite and Cementite, Metal Sci., 1979, 13, p 325–334

    Google Scholar 

  27. J.A. Peters, J.V. Bee, B. Kolk, and G.G. Garrett, On the Mechanisms of Tempered Martensite Embrittlement, Acta Metall., 1989, 37, p 675–686

    Article  Google Scholar 

  28. C.L. Briant and S.K. Banerji, The Fracture Behavior of Quenched and Tempered Manganese Steel, Metall. Mater. Trans. A, 1982, 13, p 827–836

    Article  Google Scholar 

  29. H. Kwon and C.H. Kim, Consideration on the Intergranular Tempered Martensite Embrittlement, Metall. Mater. Trans. A, 1984, 15, p 393–395

    Article  Google Scholar 

  30. M. Sarikaya, A.K. Jhingan, and G. Thomas, Retained Austenite and Tempered Martensite Embrittlement in Medium Carbon Steel, Metall. Mater. Trans. A, 1983, 14, p 1121–1133

    Article  Google Scholar 

  31. J.P. Materkowski and G. Krauss, Tempered Martensite Embrittlement in SAE 4340 Steel, Metall. Mater. Trans. A, 1979, 10, p 1643–1651

    Article  Google Scholar 

  32. S. Suzuki, M. Tanino, and Y. Waseda, Phosphorus and Boron Segregation at Prior Austenite Grain Boundaries in Low-Alloyed Steel, ISIJ Int., 2002, 42, p 676–678

    Article  Google Scholar 

  33. M.A. Islam, M. Novovic, P. Bowen, and J.K. Knott, Effect of Phosphorus Segregation on Fracture Properties of 2.25Cr-1Mo Pressure Vessel Steel, J. Mater. Eng. Perform., 2003, 12, p 244–248

    Article  Google Scholar 

  34. F.A. Darwish, L.C. Pereira, C. Gatts, and M.L. Graça, On the Tempered Martensite Embrittlement in AISI, 4140 Low Alloy Steel, Mater. Sci. Eng. A, 1991, 132, p L5–L9

    Article  Google Scholar 

  35. C.L. Briant and S.K. Banerji, The Effect of Molybdenum on Tempered Martensite Embrittlement, Scr. Metall. Mater., 1979, 13, p 813–816

    Article  Google Scholar 

  36. S.H. Song, R.G. Faulkner, and P.E.J. Flewitt, Quenching and Tempering Induced Molybdenum Segregation to Grain Boundaries in a 2.25Cr-1Mo Steel, Mater. Sci. Eng. A, 2000, 281, p 23–27

    Article  Google Scholar 

  37. L. Li, E.B. Liu, Q.F. Li, and Z. Li, Non Equilibrium Grain Boundary Cosegregation of Mo and P, Appl. Surf. Sci., 2006, 252, p 3989–3992

    Article  Google Scholar 

  38. A.J. Papworth and D.B. Williams, Segregation to Prior Austenite Grain Boundaries in Low Alloy Steels, Scr. Mater., 2000, 42, p 1107–1112

    Article  Google Scholar 

  39. S. Maropoulos, N. Ridley, and S. Karagiannis, Structural Variation in Heat Treated Low Alloy Steel Forgings, Mater. Sci. Eng. A, 2004, 380, p 79–92

    Article  Google Scholar 

  40. M.J. Peet, Transformation and Tempering of Low-Temperature Bainite, Ph.D. Dissertation, University of Cambridge (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud T. Abdu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11665-016-2336-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, AH.A., Abdu, M.T., El-Banna, ES.M. et al. Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels. J. of Materi Eng and Perform 25, 1463–1473 (2016). https://doi.org/10.1007/s11665-016-1957-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1957-z

Keywords

Navigation