Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: All-Atom Molecular-Level Analysis of the Ballistic-Impact-Induced Densification and Devitrification of Fused Silica

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

This article was retracted on 10 March 2017

Abstract

All-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, α-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of stishovite (and perhaps α-quartz) within fused silica during ballistic impact. To rationalize the findings obtained, the all-atom molecular-level computational analysis is complemented by a series of quantum-mechanics density functional theory (DFT) computations. The latter computations enable determination of the relative potential energies of the fused silica, α-quartz, and stishovite under ambient pressure (i.e., under their natural densities) as well as under imposed (as high as 50 GPa) pressures (i.e., under higher densities) and shear strains. In addition, the transition states associated with various fused-silica devitrification processes were identified. The results obtained are found to be in good agreement with their respective experimental counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976, p 91–124

    Google Scholar 

  2. C.S. Alexander, L.C. Chhabildas, W.D. Reinhart, and D.W. Templeton, Changes to the Shock Response of Quartz Due to Glass Modification, Int. J. Impact Eng., 2008, 35, p 1376–1385

    Article  Google Scholar 

  3. M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, P. Patel, and E. Strassburger, A Ballistic Material Model for Starphire®, A Soda-Lime Transparent Armor Glass, Mater. Sci. Eng. A, 2008, 492, p 397–411

    Article  Google Scholar 

  4. M. Grujicic, B. Pandurangan, W.C. Bell, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, An Improved Mechanical Material Model for Ballistic Soda-Lime Glass, J. Mater. Eng. Perform., 2009, 18, p 1012–1028

    Article  Google Scholar 

  5. M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, A Simple Ballistic Material Model for Soda-Lime Glass, Int. J. Impact Eng., 2009, 36, p 386–401

    Article  Google Scholar 

  6. M. Grujicic, W.C. Bell, P.S. Glomski, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, P. Patel, D.W. Templeton, and K.D. Bishnoi, Multi-length Scale Modeling of High-Pressure Induced Phase Transformations in Soda-Lime Glass, J. Mater. Eng. Perform., 2011, 20, p 1144–1156

    Article  Google Scholar 

  7. M. Grujicic, W.C. Bell, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, and P. Patel, Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass, J. Mater. Eng. Perform., 2012, 21, p 1580–1590

    Article  Google Scholar 

  8. M. Grujicic, W.C. Bell, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, and P. Patel, The Effect of High-Pressure Densification on Ballistic-Penetration Resistance of Soda-Lime Glass, J. Mater. Des. Appl., 2011, 225, p 298–315

    Google Scholar 

  9. M. Grujicic, B. Pandurangan, Z. Zhang, W.C. Bell, G.A. Gazonas, P. Patel, and B.A. Cheeseman, Molecular-Level Analysis of Shock-Wave Physics and Derivation of the Hugoniot Relations for Fused Silica, J. Mater. Eng. Perform., 2012, 21, p 823–836

    Google Scholar 

  10. M. Grujicic, W.C. Bell, B. Pandurangan, B.A. Cheeseman, P. Patel, and P.G. Dehmer, Effect of the Tin- vs. Air-Side Plate-Glass Orientation on the Impact Response and Penetration Resistance of a Laminated Transparent-Armor Structure, J. Mater. Des. Appl., 2012, 226, p 119–143

    Google Scholar 

  11. M. Grujicic, W.C. Bell, B. Pandurangan, B.A. Cheeseman, P. Patel, and G.A. Gazonas, Inclusion of Material Nonlinearity and Inelasticity into a Continuum-Level Material Model for Soda-Lime Glass, J. Mater. Des., 2012, 35, p 144–155

    Article  Google Scholar 

  12. M. Grujicic, B. Pandurangan, and N. Coutris, A Computational Investigation of the Multi-Hit Ballistic-Protection Performance of Laminated Transparent Armor Systems, J. Mater. Eng. Perform., 2012, 21, p 837–848

    Google Scholar 

  13. R. Chakraborty, A. Dey, and A.K. Mukhopadhyay, Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass, Metall. Mater. Trans. A, 2010, 41, p 1301–1312

    Article  Google Scholar 

  14. O. Tschauner, S.-N. Luo, P.D. Asimow, and T.J. Ahrens, Recovery of Stishovite-Structure at Ambient Conditions Out of shock-Generated Amorphous Silica, Am. Miner., 2006, 91, p 1857–1862

    Article  Google Scholar 

  15. A. Salleo, S.T. Taylor, M.C. Martin, W.R. Panero, R. Jeanloz, T. Sands, and F.Y. Génin, Laser-Driven Formation of a High-Pressure Phase in Amorphous Silica, Nat. Mater., 2003, 2, p 796–800

    Article  Google Scholar 

  16. B. Mantisi, A. Tanguy, G. Kermouche, and E. Barthel, Atomistic Response of a Model Silica Glass Under Shear and Pressure, Eur. Phys. J. B, 2012, 85, p 304–316

    Article  Google Scholar 

  17. A. Kubota, M.-J. Caturla, L. Davila, J. Stolken, B. Sadigh, A. Quong, A. Rubenchik and M. D. Feit, Atomistic response of a model silica glass under shear and pressure. Laser-Induced Damage in Optical Materials 2001, Proceedings of SPIE, Vol 4679, G.J. Exarhos, A.H. Guenther, K.L. Lewis, M.J. Soileau, and C.J. Stolz, Ed., 2002, p 108–116

  18. http://accelrys.com/products/datasheets/materials-visualizer.pdf, accessed August 20, 2014.

  19. Y.H. Tu, J. Tersoff, G. Grinstein, and D. Vanderbilt, Properties of a Continuous-Random-Network Model for Amorphous Systems, Phys. Rev. Lett., 1998, 81, p 4899–4902

    Article  Google Scholar 

  20. S. Nosé, Constant Temperature Molecular Dynamics Methods, Prog. Theor. Phys. Suppl., 1991, 103, p 1–46

    Article  Google Scholar 

  21. M. Grujicic, G. Cao, and R. Singh, The Effect of Topological Defects and Oxygen Adsorbates on the Electronic Transport Properties of Single-Walled Carbon Nanotubes, Appl. Surf. Sci., 2003, 211, p 166–183

    Article  Google Scholar 

  22. H. Sun, COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102, p 7338–7364

    Article  Google Scholar 

  23. H. Sun, P. Ren, and J.R. Fried, The COMPASS Force Field: Parameterization and Validation for Phosphazenes, Comput. Theor. Polym. Sci., 1998, 8, p 229–246

    Article  Google Scholar 

  24. M. Grujicic, Y.P. Sun, and K.L. Koudela, The Effect of Covalent Functionalization of Carbon Nanotube Reinforcements on the Atomic-Level Mechanical Properties of Poly-Vinyl-Ester-Epoxy, Appl. Surf. Sci., 2007, 253, p 3009–3021

    Article  Google Scholar 

  25. http://accelrys.com/products/datasheets/discover.pdf, accessed August 21, 2014.

  26. http://accelrys.com/products/datasheets/dmol3.pdf, accessed August 21, 2014.

  27. W.J. Hehre, Ab Initio Molecular Theory, Wiley, New York, 1986

    Google Scholar 

  28. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133–1138

    Article  Google Scholar 

  29. M. Grujicic, G. Cao, A.M. Rao, T.M. Tritt, and S. Nayak, UV-Light Enhanced Oxidation of Carbon Nanotubes Through Adsorption of Polar Molecules, Appl. Surf. Sci., 2003, 214, p 289–303

    Article  Google Scholar 

  30. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77(3865), p 3868 (Erratum Phys. Rev. Lett., 1997, 78, 1396)

    Google Scholar 

  31. T.A. Halgren and W.N. Lipscomb, The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States, Chem. Phys. Lett., 1977, 49, p 225–232

    Article  Google Scholar 

  32. G. Henkelman and H. Jonsson, Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Energy Paths and Saddle Points, J. Chem. Phys., 2000, 113, p 9978–9985

    Article  Google Scholar 

  33. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, 81, p 3684–3690

    Article  Google Scholar 

  34. M. Grujicic, K.M. Chittajallu, G. Cao, and W.N. Roy, An Atomic Level Analysis of Conductivity and Strength in Poly (Ethylene Oxide) Sulfonic Acid Based Solid Polymer Electrolytes, Mater. Sci. Eng. B, 2005, 117, p 187–197

    Article  Google Scholar 

  35. A. Tilocca, N.H. deLeeuw, and A.N. Cormack, Shell-model Molecular Dynamics Calculations of Modified Silicate Glasses, Phys. Rev. B, 2006, 73, p 104209(14)

    Article  Google Scholar 

  36. E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs, Numer. Math., 1959, 1, p 269–271

    Article  Google Scholar 

  37. T. Sato and N. Funamori, Sixfold-Coordinated Amorphous Polymorph of SiO2 Under High Pressure, Phys. Rev. Lett., 2008, 101, p 255502

    Article  Google Scholar 

  38. V.V. Brazhkin, Comment on ‘Sixfold-Coordinated Amorphous Polymorph of SiO2 Under High Pressure, Phys. Rev. Lett., 2009, 102, p 209603

    Article  Google Scholar 

  39. T. Sato and N. Funamori, Reply to Comment by V. V. Brazhkin, Phys. Rev. Lett., 2009, 102, p 209603(1)

    Google Scholar 

  40. T. Sato and N. Funamori, High-Pressure Structural Transformation of SiO2 Glass up to 100 GPa, Phys. Rev. B, 2010, 82, p 184102(5)

    Google Scholar 

  41. A. Zeidler, K. Wezka, R.F. Rowlands, D.A.J. Whittaker, P.S. Salmon, A. Polidori, J.W.E. Drewitt, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker, and M. Wilson, High-Pressure Transformation of SiO2 Glass from a Tetrahedral to an Octahedral Network: A Joint Approach Using Neutron Diffraction and Molecular Dynamics, Phys. Rev. Lett., 2014, 113, p 135501(5)

    Article  Google Scholar 

  42. M. Grujicic, K.M. Chittajallu, and J.T. Pukrushpan, Control of the Transient Behavior of Polymer Electrolyte Membrane (PEM) Fuel Cell Systems, J. Automob. Eng., 2004, 218, p 1239–1250

    Article  Google Scholar 

  43. M. Grujicic, P.S. Glomski, T. He, G. Arakere, W.C. Bell, and B.A. Cheeseman, Material Modeling and Ballistic-Resistance Analysis of Armor-Grade Composites Reinforced with High-Performance Fibers, J. Mater. Eng. Perform., 2009, 18(9), p 1169–1182

    Article  Google Scholar 

  44. M. Grujicic, B. Pandurangan, W.C. Bell, C-F. Yen, and B.A. Cheeseman, Application of A Dynamic-Mixture Shock-Wave Model to the Metal-Matrix Composite Materials, Mater. Sci. Eng. A, 2011, 528(28), p 8187–8197

    Article  Google Scholar 

Download references

Acknowledgments

The material presented in this paper is based on the work supported by the Office of Naval Research (ONR) research contract entitled “Reactive-Moiety Functionalization of Polyurea for Increased Shock-Mitigation Performance,” Contract Number N00014-14-1-0286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Additional information

The Publisher has retracted the following article from the Journal of Materials Engineering and Performance at the request of the Editor-in-Chief, following an investigation that revealed extensive duplication of previous publications.

M. Grujicic, J.S. Snipes, S. Ramaswami, R. Yavari and R.S. Barsoum, “All-Atom Molecular-Level Analysis of the Ballistic-Impact-Induced Densification and Devitrification of Fused Silica”, J. Mater. Eng. Perform. (2015), 24, 2970.

The above article is a copy of M. Grujicic, J.S. Snipes, S. Ramaswami, R. Yavari and B. Cheeseman, “Densification and Devitrification of Fused Silica Induced by Ballistic Impact: A Computational Investigation”, J. Nanomater. (2015), Article ID 650625, DOI:10.1155/2015/650625.

We regret the inconvenience caused to our readers.

An erratum to this article is available at http://dx.doi.org/10.1007/s11665-017-2585-y.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grujicic, M., Snipes, J.S., Ramaswami, S. et al. RETRACTED ARTICLE: All-Atom Molecular-Level Analysis of the Ballistic-Impact-Induced Densification and Devitrification of Fused Silica. J. of Materi Eng and Perform 24, 2970–2983 (2015). https://doi.org/10.1007/s11665-015-1590-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1590-2

Keywords

Navigation