Skip to main content
Log in

Cyclic Nanoindentation and Finite Element Analysis of Ti/TiN and CrN Nanocoatings on Zr-Based Metallic Glasses Mechanical Performance

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cyclic depth-sensing nanoindentation tests are carried out to unravel the effect of monolithic and multilayer thin coatings on load-bearing capacity and stress distribution in the coating-Zr-based metallic glass systems. Thin films of TiN, CrN, and Ti/TiN multilayer, having thickness of 300 nm, are deposited on Zr60Ni10Cu20Al10 and Zr50Cu40Al10 metallic glasses by RF sputtering technique. Strain softening occurs over several cycles in Zr-based metallic glasses, CrN, and TiN films as evidenced by a disparity between the unloading and reloading sequences. However, the cyclic nanoindentation of Ti/TiN multilayer coating results in a hysteresis loop in the load-depth profiles, and this event depends on the number of cycles and the loading rates. AFM and SEM characterization of remnant imprints revealed microcraks and crack-like shear bands in nanocoatings and Zr-based metallic glasses, respectively. Based on shear-fracture driven plastic flow of the coatings, a modified cavity model is used to determine the shear stress evolution as a function of penetration depth. The finite-element simulations predicted the stress distribution beneath the indenter and are well consistent with the evolving trend of shear stress obtained from experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, Mat. Res. Bull., 1999, 24(10), p 42–56

    Article  Google Scholar 

  2. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties, Nat. Mater., 2003, 2, p 661–664

    Article  Google Scholar 

  3. T.C. Hufnagel, P. El-Deiry, and R.P. Vinci, Development of Shear Band Structure during Deformation of a Zr57Ti5Cu20Ni8Al10 Bulk Metallic Glass, Script. Mater., 2000, 43, p 1071–1076

    Article  Google Scholar 

  4. C.C. Hays, C.P. Kim, and W.L. Johnson, Improved Mechanical Behaviour of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions, Mater. Sci. Eng. A, 2001, 304–306, p 650–655

    Article  Google Scholar 

  5. S. Scudino, K.B. Surreddi, and J. Eckert, Mechanical Properties of Cold-Rolled Zr60Ti5Ag5Cu12.5Ni10Al7.5 Metallic Glass, Phys. Status Solidi A, 2010, 207, p 1118–1121

    Article  Google Scholar 

  6. M.H. Lee, K.S. Lee, J. Das, J. Thomas, U. Kühn, and J. Eckert, Improved Plasticity of Bulk Metallic Glasses Upon Cold Rolling, Script. Mater., 2010, 62, p 678–681

    Article  Google Scholar 

  7. S. Scudino, B. Jerliu, K.B. Surreddi, U. Kühn, and J. Eckert, Effect of Cold Rolling on Compressive and Tensile Mechanical Properties of Zr52.5Ti5Cu18Ni14.5Al10 Bulk Metallic Glass, J. Alloy Compd., 2011, S509, p S128–S130

    Article  Google Scholar 

  8. Y. Zhang, W.H. Wang, and A.L. Greer, Making Metallic Glasses Plastic by Control of Residual Stress, Nat. Mater, 2006, 5, p 857–860

    Article  Google Scholar 

  9. A.A. Voevodin, J.S. Zabinski, and C. Muratore, Recent Advances in Hard, Tough, and Low Friction Nanocomposite Coatings, Tsinghua Sci. Technol., 2005, 10, p 665–679

    Article  Google Scholar 

  10. M. Kot, T. Moskalewicz, B. Wendler, W. Rakowski, and A. Czyrska, Micromechanical and Tribological Properties of nc-TiC/a-C Nanocomposite Coatings, Solid State Phenom., 2011, 177, p 36–46

    Article  Google Scholar 

  11. S.-B. Qiu and K.-G. Yao, Novel Application of the Eletrodeposition on Bulk Metallic Glasses, Appl. Surf. Sci., 2008, 255, p 3454–3458

    Article  Google Scholar 

  12. F.X. Qin, X.M. Wang, and A. Inoue, Observation of Bone-Like Apatite on Ti-Coated Zr55Al10Ni5Cu30 Bulk Metallic Glass After Alkali Treatment, Intermetallics, 2008, 16, p 917–922

    Article  Google Scholar 

  13. F.X. Qin, X.M. Wang, T. Wada, G.Q. Xie, K. Asami, and A. Inoue, Formation of Hydroxyapatite on Ti-Coated Ti-Zr-Cu-Pd Bulk Metallic Glass, Mater. Trans., 2009, 50(3), p 605–609

    Article  Google Scholar 

  14. A. Tekaya, S. Labdi, T. Benameur, A. Piatkowska, P. Aubert, and J. Jagielski, Synthesis and Optimization of Ti–TiN Multilayered Protective Nanocoatings on Zr-Based Bulk Metallic Glass, Surf. Coat. Technol., 2011, 205, p 3404

    Article  Google Scholar 

  15. A. Tekaya, T. Benameur, S. Labdi, and P. Aubert, Effect of Ti/TiN Multilayer Protective Nanocoatings on Zr-Based Metallic Glasses, Thin Solid Films, 2013, 539, p 215–221

    Article  Google Scholar 

  16. S.N. Dub, Y.V. Milman, D.V. Lotsko, and A.N. Belous, The Anomalous Behavior of Al-Cu-Fe Quasicrystal During Nanoindentation, J. Mater. Sci. Lett., 2001, 20, p 1043

    Article  Google Scholar 

  17. T. Saraswati, T. Sritharan, S. Mhaisalkar, C.D. Breach, and F. Wulff, Cyclic Loading as an Extended Nanoindentation Technique, Mater. Sci. Eng. A, 2006, 423, p 14–18

    Article  Google Scholar 

  18. J.M. Antunes, A. Cavaleiro, L.F. Menezes, M.I. Simões, and J.V. Fernandes, Ultra-Microhardness Testing Procedure with Vickers Indenter, Surf. Coat. Technol., 2002, 149, p 27–35

    Article  Google Scholar 

  19. C. Schuh, Nanoindentation Studies of Materials, Mater Today, 2006, 9(5), p 32–40

    Article  Google Scholar 

  20. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583

    Article  Google Scholar 

  21. C.A. Schuh and T.G. Nieh, A Nanoindentation Study of Serrated Flow in Bulk Metallic Glasses, Acta Mater., 2003, 51, p 87–99

    Article  Google Scholar 

  22. A.S. Argon, Plastic Deformation in Metallic Glasses, Acta Metall., 1979, 27, p 47–58

    Article  Google Scholar 

  23. C.A. Schuh and A.C. Lund, Atomistic Basis for the Plastic Yield Criterion of Metallic Glass, Nat. Mater., 2003, 2, p 449–452

    Article  Google Scholar 

  24. F. Spaepen, A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses, Acta Metall., 1977, 25, p 407–415

    Article  Google Scholar 

  25. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomistic Packing and Short-to-Medium-Range Order in Metallic glasses, Nature, 2006, 439, p 419–425

    Article  Google Scholar 

  26. K. Hajlaoui, T. Benameur, G. Vaughan, and A.R. Yavari, Thermal Expansion and Indentation-Induced Free Volume in Zr-Based Metallic Glasses Measured by Real-Time Diffraction Using Synchrotron Radiation, Script. Mater., 2004, 51(9), p 843–848

    Article  Google Scholar 

  27. J.J. Lewandowski and A.L. Greer, Temperature Rise at Shear Bands in Metallic Glasses, Nat. Mater., 2005, 5, p 15–18

    Article  Google Scholar 

  28. J. Richter, Application of Vickers Indentation for Assessment of PVD TiN Coated New Non Ledeburitic High-Speed Steels, Surf. Coat. Technol., 2003, 162, p 119–130

    Article  Google Scholar 

  29. C. Rebholz, A. Leyland, J.M. Schneider, A.A. Voevodin, and A. Mattews, Structure, Hardness and Mechanical Properties of Magnetron-Sputtered Titanium-Aluminium Boride Films, Surf. Coat. Technol., 1999, 120–121, p 412–417

    Article  Google Scholar 

  30. J. Musil, F. Kunc, H. Zeman, and H. Polakova, Relationships Between Hardness, Young’s Modulus and Elastic Recovery in Hard Nanocomposite Coatings, Surf. Coat. Technol., 2002, 154, p 304–313

    Article  Google Scholar 

  31. A. Tekaya, S. Labdi, T. Benameur, and A. Jellad, Quasi-Static Cyclic Loadings Induced Inelastic Deformation in a Zr-Based Bulk Metallic Glass Under Nanoindentation, J. Mater. Sci., 2009, 44, p 4930

    Article  Google Scholar 

  32. Z.-H. Xu and X. Li, Influence of Equi-Biaxial Residual Stress on Unloading Behaviour of Nanoindentation, Acta Mater., 2005, 53, p 1913–1919

    Article  Google Scholar 

  33. S. Bhowmick, V. Jarayam, and S.K. Biswas, Deconvolution of Fracture Properties of TiN Films on Steels From Nanoindentation Load-Displacement Curves, Acta Mater., 2005, 538, p 2459–2467

    Article  Google Scholar 

  34. K.J. Ma, A. Bloyce, and T. Bell, Examination of Mechanical Properties and Failure Mechanisms of TiN and Ti-TiN Multilayer Coatings, Surf. Coat. Technol., 1995, 76–77, p 297

    Article  Google Scholar 

  35. K.J. Ma, A. Bloyce, R.A. Andrievski, and G.V. Kalinnikov, Microstructural Response of Mono- and Multilayer Hard Coatings During Indentation Microhardness Testing, Surf. Coat. Technol., 1997, 94–95, p 322

    Article  Google Scholar 

  36. Z.H. Xie, M. Hoffman, P. Munroe, and R. Singh, Microstructural Response of TiN Monolithic and Multilayer Coatings During Microscratch Testing, J. Mater. Res., 2007, 22(8), p 2312–2318

    Article  Google Scholar 

  37. R.D. Conner, R.B. Dandliker, and W.L. Johnson, Mechanical Properties of Tungsten and Steel Fiber Reinforced Zr41.25T13.75Cu12.5Ni10Be22.5 Metallic Glass Matrix Composites, Acta Mater., 1998, 46(17), p 6089–6102

    Article  Google Scholar 

  38. Y. Sun, A. Bloyce, and T. Bell, Finite Element Analysis of Plastic Deformation of Various TiN Coating/Substrate Systems Under Normal Contact with a Rigid Sphere, Thin Solid Films, 1995, 271, p 122–131

    Article  Google Scholar 

  39. A.M. Dias, Numerical Study of Spherical Indentation in Superficial Coatings, Int. J. Res. Rev. Appl., 2012, 11(2), p 271–278

    Google Scholar 

  40. A.A. Voevodin, E.V. Iarve, W. Ragland, J.S. Zabinski, and S. Donaldson, Stress Analysis and In-Situ Fracture Observation of Wear Protective Multilayer Coatings, Surf. Coat. Technol., 2001, 148, p 38–45

    Article  Google Scholar 

  41. J.-H. Huang, C.-H. Ma, and H. Chen, Effect of Ti Interlayer on the Residual Stress and Texture Development of TiN Thin Films Deposited by Unbalanced Magnetron Sputtering, Surf. Coat. Technol., 2006, 201, p 3199–3204

    Article  Google Scholar 

  42. M.Y. He, F.E. Heredia, D.J. Wissuchek, M.C. Shaw, and A.G. Evans, Acta Metall. Mater., 1993, 41(4), p 1223–1228

    Article  Google Scholar 

  43. E. Bemporad, M. Sebastiani, C. Pecchio, and S. De Rossi, High Thickness Ti/TiN Multilayer Thin coatings for Wear Resistant Applications, Surf. Coat. Technol., 2006, 201, p 2155–2165

    Article  Google Scholar 

  44. K. Rzepiejewska-Malyska, M. Parlinska-Wojtan, K. Wasmer, and K. Hejduk, In-Situ SEM Indentation Studies of the Deformation Mechanisms in TiN,CrN and TiN/CrN, Micron, 2009, 40, p 22–27

    Article  Google Scholar 

  45. B. Borawski, J. Todd, J. Singh, and D.E. Wolfe, The Influence of Ductile Interlayer Material on the Particle Erosion Resistance of Multilayered TiN Coatings, Wear, 2011, 271, p 2890–2898

    Article  Google Scholar 

  46. J. Stallard, S. Poulat, and D.G. Teer, The Study of the Adhesion of a TiN Coating on Steel and Titanium Alloy Substrates Using a Multi-Mode Scratch Tester, Tribol. Int., 2006, 39, p 159–166

    Article  Google Scholar 

  47. J.C. Caicedo, C. Amaya, L. Yate, O. Nos, M.E. Gomez, and P. Prieto, Hard Coating Performance Enhancement by Using [Ti/TiN] n , [Zr/ZrN] n and [TiN/ZrN] n Multilayer System, Mater. Sci. Eng. B, 2010, 171, p 56–61

    Article  Google Scholar 

  48. S.Y. Lee, G.S. Kim, and J.H. Hahn, Effect of the Cr Content on the Mechanical Properties of Nanostructured TiN/CrN Coatings, Surf. Coat. Technol., 2004, 177–178, p 426–433

    Article  Google Scholar 

  49. J.M. Antunes, L.F. Menezes, and J.V. Fernandes, Three-Dimensional Numerical Simulation of Vickers Indentation Tests, Int. J. Solids Struct., 2006, 43(3–4), p 784–806

    Article  Google Scholar 

  50. J.M. Antunes, J.V. Fernandes, N.A. Sakharova, M.C. Oliveira, and L.F. Menezes, On the Determination of the Young’s Modulus of Thin Films Using Indentation Tests, Int. J. Solids Struct., 2007, 44, p 8313–8334

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French-Tunisian CMCU_Hubert Curien research program, Award no. 08G1122. The authors gratefully acknowledge Olek Maciejak for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Benameur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekaya, A., Ghulman, H.A., Benameur, T. et al. Cyclic Nanoindentation and Finite Element Analysis of Ti/TiN and CrN Nanocoatings on Zr-Based Metallic Glasses Mechanical Performance. J. of Materi Eng and Perform 23, 4259–4270 (2014). https://doi.org/10.1007/s11665-014-1212-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1212-4

Keywords

Navigation