Skip to main content
Log in

Non-linear Correlation Between Uniaxial Tensile Properties and Shear-Edge Hole Expansion Ratio

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Stretch flanging of steel sheets is an important formability issue for automobile industry. Finite element simulation study confirms that the edge of the hole deforms in a uniaxial tensile manner during the hole expansion process. To understand the effect of various tensile properties on hole expansion ratio, current experimental data and collected data from published work have been used. Yield stress, ultimate tensile stress, coefficient of normal anisotropy, total elongation, and post uniform elongation are closely related to hole expansion ratio. A non-linear relationship between hole expansion ratio and tensile properties (ultimate tensile stress, coefficient of normal anisotropy, and total elongation) is developed in the present investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Lange, Handbook of Metal Forming, McGraw-Hill Co, New York, 1985

    Google Scholar 

  2. T.-C. Chen, An Analysis of Forming Limit in the Elliptic Hole-Flanging Process of Sheet Metal, J. Mater. Process. Technol., 2007, 192–193, p 373–380

    Article  Google Scholar 

  3. Z. Chen, M.J. Worswick, A.K. Pilkey, and D.J. Lloyd, Damage Percolation During Stretch Flange Forming of Aluminum Alloy Sheet, J. Mech. Phys. Solids, 2005, 53, p 2692–2717

    Article  Google Scholar 

  4. A. Le Port, S. Thuillier, and P.-Y. Manach, Characterization of Surface Defects After Flanging of Metallic Sheets, J. Mater. Process. Technol., 2011, 211, p 2062–2071

    Article  Google Scholar 

  5. F. Stachowicz, Estimation of Hole-Flange Ability for Deep Drawing Steel Sheets, Arch. Civ. Mech. Eng., 2008, 8, p 167–172

    Article  Google Scholar 

  6. T. Kuwabara, K. Hashimoto, E. IIzuka, and J.W. Yoon, Effect of Anisotropic Field Functions on the Accuracy of Hole Expansion Simulations, J. Mater. Process. Technol., 2011, 211, p 475–481

    Article  Google Scholar 

  7. K. Mori, Y. Abe, and Y. Suzui, Improvement of Stretch Flangeability of Ultra Strength Steel Sheet by Smoothing of Sheared Edge, J. Mater. Process. Technol., 2010, 210, p 653–659

    Article  Google Scholar 

  8. B.S. Levy and C.J. Van Tyne, Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching, J. Mater. Eng. Perform., 2012, 21, p 1205–1213

    Article  Google Scholar 

  9. Y.-M. Huang and K.-H. Chien, The Formability Limitation of the Hole-Flanging Process, J. Mater. Process. Technol., 2001, 117, p 45–51

    Google Scholar 

  10. D.-K. Leu, T.-C. Chen, and Y.-M. Huang, Influence of Punch Shape on the Collar-Drawing Process of Sheet Steel, J. Mater. Process. Technol., 1999, 88, p 134–146

    Article  Google Scholar 

  11. D.I. Hyun, S.M. Oak, S.S. Kang, and Y.M. Moon, Estimation of Hole Flangeability for High Strength Steel Plates, J. Mater. Process. Technol., 2002, 130–131, p 9–13

    Article  Google Scholar 

  12. A. Krichen, A. Kacem, and M. Hbaieb, Blank-Holding Effect on the Hole-Flanging Process of Sheet Aluminum Alloy, J. Mater. Process. Technol., 2011, 211, p 619–626

    Article  Google Scholar 

  13. A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, and A. Pichler, Hole Expansion of Dual-phase and Complex-phase AHS Steels—Effect of Edge Conditions, Steel Res. Int., 2009, 80(1), p 71–77

    Google Scholar 

  14. X. Fang, Z. Fan, B. Ralph, P. Evans, and R. Underhill, The Relationships Between Tensile Properties and Hole Expansion Property of C-Mn Steels, J. Mater. Sci., 2003, 38, p 3877–3882

    Article  Google Scholar 

  15. L. Chen, J. Kim, S.-K. Kim, K.-G. Chin, and B.C. De Cooman, On the Stretch-Flangeability of High Mn TWIP Steels, Mater. Sci. Forum, 2010, 654–656, p 278–281

    Article  Google Scholar 

  16. B.S. Levy, M. Gibbs, and C.J. Van Tyne, Failure During Sheared Edge Stretching of Dual-Phase Steels, Met. Trans. A, 2013, 44A, p 3635

    Article  Google Scholar 

  17. K. Sugimoto, J. Sakaguchi, T. Iida, and T. Kashima, Stretch-Flangeability of a High-Strength TRIP Type Bainitic Sheet Steel, ISIJ Int., 2000, 40(9), p 920–926

    Article  Google Scholar 

  18. L. Chen, J.-K. Kim, S.-K. Kim, G.-S. Kim, K.-G. Chin, and B.C. De Cooman, Stretch-Flangeability of High Mn TWIP Steel, Steel Res. Int., 2010, 81(7), p 552–568

    Article  Google Scholar 

  19. M. Sudo and T. Twai, Tetsu-to-Hagane, 1982, 68, p 1185–1194

    Google Scholar 

  20. F. Hairer, C. Krempaszky, P. Tsipouridis, and E. Werner, Proceeding of Materials Science and Technology (MS&T) Conference and Exhibition, Oct. 25–29 2009, Pittsburgh, USA, 2009, p 1391–1401

  21. J. Lee, S.-J. Lee, and B.C. De Cooman, Effect of Micro-Alloying Elements on the Stretch-Flangeability of Dual Phase Steel, Mater. Sci. Eng. A, 2012, 536, p 231–238

    Article  Google Scholar 

  22. B.S. Levy and C.J. Van Tyne, Effect of a Strain-Hardening Rate at Uniform Elongation on Sheared Edge Stretching, J. Mater. Eng. Perform., 2012, 21, p 2147–2154

    Article  Google Scholar 

  23. Y.-M. Huang, An Elasto-Plastic Finite Element Analysis of the Sweet Metal Stretch Flanging Process, Int. J. Adv. Manuf. Technol., 2007, 34, p 641–648

    Article  Google Scholar 

  24. Y.K. Ko, J.S. Lee, H. Huh, H.K. Kim, and S.H. Park, Prediction of Fracture in Hub-Hole Expanding Process Using a New Ductile Fracture Criterion, J. Mater. Process. Technol., 2007, 187–188, p 358–362

    Article  Google Scholar 

  25. M.J. Worswick and M.J. Finn, The Numerical Simulation of Stretch Flange Forming, Int. J. Plast, 2000, 16, p 701–720

    Article  Google Scholar 

  26. S.K. Paul, M. Mukherjee, S. Kundu, and S. Chandra, Prediction of Hole Expansion Ratio for automotive grade steels. Comput. Mater. Sci., 2014, 89, p 189–197

  27. K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, and C. Kim, A Modified Damage Model for Advanced High Strength Steel Sheets, Int. J. Plast, 2011, 27, p 1485–1511

    Article  Google Scholar 

  28. P. Sartkulvanich, B. Kroenauer, R. Golle, A. Konieczny, and T. Altan, Finite Element Analysis of the Effect of Blanked Edge Quality Upon Stretch Flanging of AHSS, CIRP Ann. Manuf. Technol., 2010, 59, p 279–282

    Article  Google Scholar 

  29. A. Kacem, A. Krichen, P.Y. Manach, S. Thuillier, and J.W. Yoon, Failure Prediction in the Hole-Flanging Process of Aluminium Alloys, Eng. Fract. Mech., 2013, 99, p 251–265

    Article  Google Scholar 

  30. S. Sadagopan, C. Wong, M. Huang, B. Yan, and D. Urban, Formability Characterization of a New Generation of High Strength Steels, Report No. 0012, American Iron and Steel Institute Technology Roadmap Program Office, Pittsburgh, PA, USA, 2003.

  31. R.D. Adamczyk and G.M. Michal, Sheared Edge Extension of High-Strength Cold-Rolled Steels, J. Appl. Metalwork., 1986, 4(2), p 157–163

    Article  Google Scholar 

  32. R.J. Comstock, Jr., D.K. Scherrer, and R.D. Adamczyk, Hole Expansion in a Variety of Sheet Steels, J. Mater. Eng. Perform., 2006, 15, p 675–683

    Article  Google Scholar 

  33. ASTM, Annual Book of ASTM Standards, ASTM Designation E 8, ASTM, Philadelphia, PA, 1989, 03(01), p 131–146

  34. ISO 16630:2009, Metallic Materials—Sheet and Strip—Hole Expanding Test (2009).

  35. ABAQUS (User’s Manual (version 6.7)), Hibbit, Karlsson & Sorensen Inc., USA (2007)

  36. S.K. Paul, Predicting the Flow Behavior of Metals Under Different Strain Rate and Temperature Through Phenomenological Modeling, Comput. Mater. Sci., 2012, 65, p 91–99

    Article  Google Scholar 

  37. E. El-Magd and M. Abouridouane, Einfluss der Umformgeschwindigkeit und -temperatur auf das Fließverhalten der Magnesiumlegierung AZ80, Z. Zeitschrift Fur Metallkunde, 2001, 92(1), p 1231–1235

    Google Scholar 

  38. ECSC Report. EUR 22380 EN: Crash Relevant Properties and Dynamic Denting of Pre-strained or Pre-loaded High Strength Steels for Automotive Parts www.bookshop.europa.eu, (2006).

  39. W.S. Lee and H.F. Lam, The Deformation Behaviour and Microstructure Evolution of High Strength Alloy Steel at High Rate of Strain, J. Mater. Process. Technol., 1996, 57, p 233–240

    Article  Google Scholar 

  40. J.H. Sung, J.H. Kim, and R.H. Wagoner, A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plast., 2010, 26, p 1746–1771

    Article  Google Scholar 

  41. B.S. Levy and C.J. Van Tyne, Failure During Sheared Edge Stretching, J. Mater. Eng. Perform., 2008, 17, p 842–848

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. Pinaki Biswas, Dr. Saurabh Kundu and Dr. Sanjay Chandra, R&D, Tata Steel Limited, Jamshedpur, India, for their valuable suggestions. The author also likes to thank Mr. Abhishek Raj for helping during HER experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Kumar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K. Non-linear Correlation Between Uniaxial Tensile Properties and Shear-Edge Hole Expansion Ratio. J. of Materi Eng and Perform 23, 3610–3619 (2014). https://doi.org/10.1007/s11665-014-1161-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1161-y

Keywords

Navigation