Skip to main content
Log in

Effect of La-Substitution on the Electrical Conductivity of Sr1−x La x MoO4+δ (x = 0-0.3) Compounds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Various compositions of Sr1−x La x MoO4+δ (x = 0.05, 0.1, 0.2, and 0.3) compounds were prepared by solid state reaction route. The samples were characterized by powder-XRD, TG-DTA, and SEM-EDAX techniques. Formation of single crystalline phases of Sr1−x La x MoO4+δ was confirmed from powder-XRD patterns. The thermal stability of La-doped SrMoO4 compounds was investigated by TG-DTA. Uniform grain distribution was observed in the SEM image of 10-20 mol.% La-substituted compositions. Needle-shaped structures were observed in the SEM image of Sr0.3La0.1MoO4+δ and were confirmed to be La2Mo2O9 by XRD examination. The electrical conductivity of these compounds was measured by AC-impedance technique in the temperature range of 373-1073 K in air ambience and compared with that of pristine SrMoO4. The electrical conductivity was found to decrease for La-substituted SrMoO4 compared to pristine SrMoO4. The diffusion coefficient calculated from the electrical conductivity was found to be in the range of 1.94 ± 0.02 × 10−13 to 1.15 ± 0.01 × 10−11 cm2/S at 873-1173 K for substituted composition and 3.47 ± 0.02 × 10−13 to 2.48 ± 0.01 × 10−10 cm2/S for pristine SrMoO4 at 673-1073 K temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.G. Dickinson, The Crystal Structures of Wulfenite and Scheelite, J. Am. Chem. Soc., 1920, 42, p 85–93

    Article  Google Scholar 

  2. T. Esaka, Ionic Conduction of Scheelite Type Oxide, Solid State Ionics, 2000, 136, p 1–9

    Google Scholar 

  3. A. Petrov and P. Kofstad, Electrical Conductivity of CaMoO4, J. Solid State Chem., 1979, 30, p 83–88

    Article  Google Scholar 

  4. R.J. Cava, R.S. Roth, T. Negas, H.S. Parker, and D.B. Minor, Crystal Chemistry, Modulated Structure, and Electrical Conductivity in the Oxygen Excess Scheelite-Based Compounds La1−x Th x NbO4+x/2 and LaNb1-x W x O4+x/2, J. Solid State Chem., 1981, 40, p 318–329

    Article  Google Scholar 

  5. I. Sato, T. Nakagiri, T. Hirosawa, S. Miyahara, and T. Namekawa, Fission Products Release from Irradiated FBR MOX Fuel During Transient Condition, J. Nucl. Sci. Technol., 2003, 40, p 104–113

    Article  Google Scholar 

  6. H. Kleykamp, The Chemical State of the Fission Products in Oxide Fuels, J. Nucl. Mater., 1985, 131, p 221–246

    Article  Google Scholar 

  7. http://en.wikipedia.org/wiki/Nuclear_fission_product,Nuclear_fission_product. Accessed 15 May 2014

  8. D. Savage, J.E. Robbins, and R.J. Merriman, Hydrothermal Crystallization of Radioactive Waste Storage Glass, Mineral. Mag., 1985, 49, p 195–201

    Article  Google Scholar 

  9. G. Roth and S. Weisenburger, Vitrification of High-Level Liquid Waste: Glass Chemistry, Process Chemistry and Process Technology, Nucl. Eng. Des., 2000, 202, p 197–207

    Article  Google Scholar 

  10. W.L. Waber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Novrotsky, D.L. Price, A.M. Stoneham, and M.C. Weinberg, Radiation Effects in Glasses Used for Immobilization of High-Level Waste and Plutonium Deposition, J. Mater. Res., 1997, 12(8), p 1946–1978

    Google Scholar 

  11. C.P. Kaushik, R.K. Sharma, P. Sengupta, A. Kumar, D. Das, G.B. Kole, and K. Raj, Barium Borosilicate Glass—A Potential Matrix for Immobilization of Sulphate Bearing High-Level Radioactive Liquid Waste, J. Nucl. Mater., 2006, 358(2-3), p 129–138

    Article  Google Scholar 

  12. Z. Singh, S. Dash, R. Prasad, and V. Venugopal, Enthalpy Increment Measurements of SrMoO (s) and BaMoO (s), J. Alloy. Compd., 1998, 279, p 287–294

    Article  Google Scholar 

  13. Y. Zhang, N.A.W. Holzwarth, and R.T. Williams, Electronic Band Structures of the Scheelite Materials CaMoO4, CaWO4, PbMoO4, and PbWO4, Phys. Rev. B, 1998, 57, p 12738–12750

    Article  Google Scholar 

  14. J. Belle and R.M. Berman (eds.), Thorium Dioxide: Preparation and Nuclear Applications, Thermal Expansion Chapter, Technical Report, 1984, p 169, Govt. Printing Office, Washington, US. doi:10.2172/5986642

  15. D. Ehrt and R. Keding, Electrical Conductivity and Viscosity of Borosilicate Glasses and Melts, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B, 2009, 50(3), p 165–171

    Google Scholar 

  16. E. Gürmen, E. Daniels, and J.S. King, Crystal Structure Refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by Neutron Diffraction, J. Chem. Phys., 1971, 55, p 1093–1097

    Article  Google Scholar 

  17. Natl. Bur. of Stand. (U.S.), PDF card No. 08-0482 for SrMoO4, Circ., 1957, 539(7), p 50

  18. H. Zhao, F. Zhang, X. Guo, and Q. Zhang, Ab Initio Study of Electronic Structures of BaMoO4 Crystals Containing an Interstitials Oxygen Atom, Chin. J. Phys., 2010, 48(5), p 662–670

    Google Scholar 

  19. D. Saha, M. Giridhar, A.J. Bhattacharyya, and T.G.N. Row, Synthesis, Structure and Ionic Conductivity in Scheelite Type Li(0.5)Ce(0.5−x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm), J. Chem. Sci., 2011, 123, p 5–13

    Article  Google Scholar 

  20. M. Hartmanova, M.T.L.M. Jergel, V. Smatko, and F. Kundracik, Structure and Electrical Conductivity of Multicomponent Metal Oxides Having Scheelite Structure, Russ. J. Electrochem., 2009, 45, p 621–629

    Article  Google Scholar 

  21. R.D. Shannon, Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A, 1976, 32, p 751–767

    Article  Google Scholar 

  22. T. Esaka, T. Mina-ai, and H. Iwahara, Oxide Ion Conduction in the Solid Solution Based on the Scheelite-Type Oxide PbWO4, Solid State Ionics, 1992, 52, p 319–325

    Article  Google Scholar 

  23. F. Goutenoire, O. Isnard, R. Retoux, and P. Lacorre, Crystal Structure of La2Mo2O9, a New Fast Oxide Ion Conductor, Chem. Mater., 2000, 12(9), p 2575–2580

    Article  Google Scholar 

  24. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, and Y. Laligant, Designing Fast Oxide-Ion Conductor Based on La2Mo2O9, Nature, 2000, 404, p 856

    Article  Google Scholar 

  25. D.M. López, J.C. Vázquez, J.C.R. Morales, A. Rodríguez, J.T.S. Irvine, and P. Núňez, Synthesis, Sinterability and Ionic Conductivity of Nano-crystalline La2Mo2O9 powders, Solid State Ionics, 2005, 176(23-26), p 1807–1816

    Google Scholar 

  26. R. Subasri, D. Matusch, H. Näfe, and F. Aldinger, Synthesis and Characterization of (La1−x M x )2Mo2O9−δ; M = Ca2+, Sr2+or Ba2+), J. Eur. Ceram. Soc., 2004, 24(1), p 129–137

    Article  Google Scholar 

  27. D. Borgmann, E. Hums, G. Hopfengartner, G. Wedler, G.W. Spitznagel, and I. Rademacher, XPS Studies of Oxidic Model Catalysts: Internal Standards and Oxidation Numbers, J. Electron Spectrosc. Relat. Phenom., 1993, 63, p 91–116

    Article  Google Scholar 

  28. A.S. Al-Harthi, D.J. Thompson, G.D. Khattak, L.E. Wenger, and M.A. Salim, Structure of Molybdenum-Phosphate Glasses by X-ray Photoelectron Spectroscopy (XPS), J. Non-Cryst. Solids, 1997, 212, p 180–191

    Article  Google Scholar 

  29. A. Petrov and P. Kofstad, Electrical Conductivity of CaMoO4, J. Solid State Chem., 1979, 30(1), p 83–88

    Article  Google Scholar 

  30. A. Grandjean, M. Malki, and C. Simonnet, Effect of Composition on Ionic Transport in SiO2-B2O3-Na2O Glasses, J. Non-Cryst. Solids, 2006, 32, p 2731–2736

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. R. Sudha and Mr. Swapan Kumar Mahato of Materials Chemistry Division, Chemistry Group, IGCAR for recording the SEM-EDAX of the samples and Mr. Sajal Ghosh for recording the TG/GTA data of the sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrudananda Jena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, B.K., Jena, H. & Govindan Kutty, K.V. Effect of La-Substitution on the Electrical Conductivity of Sr1−x La x MoO4+δ (x = 0-0.3) Compounds. J. of Materi Eng and Perform 23, 3126–3132 (2014). https://doi.org/10.1007/s11665-014-1053-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1053-1

Keywords

Navigation