Skip to main content
Log in

The Effect of Nb and Ti on Structure and Mechanical Properties of 12Ni-25Cr-0.4C Austenitic Heat-Resistant Steel after Aging at 900 °C for 1000 h

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Austenitic heat-resistant steels are particularly suitable for applications where service conditions comprise high temperature. The demand for better performance has motivated developments in these steels. In this work, Ti and Nb were added to austenitic heat-resistant steels, Fe-12Ni-25Cr-0.4C, wt.% simultaneously. Microstructural changes were studied via scanning electron microscopy equipped with energy dispersive spectrum (EDS), optical microscopy, and x-ray diffraction (XRD) in as-cast condition and after aging in 900 °C for 1000 h. Mechanical properties were measured using tensile tests, impact energy, and Vickers hardness. It was observed that by formation of NbC and TiC, the level of fragmentation of the chromium carbides increased, as a positive aspect for mechanical properties. XRD and EDS results show increasing the amount of Ti can inhibit G-phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Chen, X. Ma, L. Wang, and X. Ye, Effect of Rare Earth Element Yttrium Addition on Microstructures and Properties of a 21Cr-11Ni Austenitic Heat-Resistant Stainless Steel, Mater. Des., 2011, 32, p 2206–2212

    Article  Google Scholar 

  2. M. Karaminejad, E. Kordzadeh, and S. Ebrahimi, The Fracture Mechanism of an Austenitic Heat Resistant Steel in Copper Conventer Atmosphere, Int. J. ISSI, 2005, 2, p 31–36

    Google Scholar 

  3. S. Shi and J.C. Lippold, Microstructure Evolution During Service Exposure of Two Cast, Heat Resistant Stainless Steels—HP-Nb Modified and 20-32Nb, Mater. Charact., 2008, 59, p 1029–1040

    Article  Google Scholar 

  4. S. Latha, M.D. Mathew, P. Parameswaran, M. Nandagopal, and S.L. Mannan, Effect of Titanium on the Creep Deformation Behaviour of 14Cr-15Ni-Ti Stainless Steel, J. Nucl. Mater., 2011, 409, p 214–220

    Article  Google Scholar 

  5. C.R. Barrett, J.L. Lytton, and O.D. Sherby, Effect of Grain Size and Annealing Treatment on Steady State Creep of Copper, Trans. Met. Soc. AIME, 1967, 239, p 170–180

    Google Scholar 

  6. H.E. Evans, Mechanisms of Creep Fracture, Elsevier, London, 1984

    Google Scholar 

  7. T.L. Shinoda, M.B. Zaghloul, and Y. Kondo, Effect of Single and Combined Additions of Ti and Nb on the Structure and Strength of the Centrifugally Cast HK-40 Steel, Trans. Iron Steel. Inst. Jpn., 1978, 18, p 139–148

    Google Scholar 

  8. R.M.T. Borges and L.H. de Almeida, Microstructure of a Centrifugally Cast Modified-HP Steel Tube with Yttrium Additions, Acta Microsc. A, 1999, 8, p 251–252

    Google Scholar 

  9. F.C. Nunes, J. Dille, J.L. Delplancke, and L.H. de Almeida, Yttrium Addition to Heat-Resistant Cast Stainless Steel, Scr. Mater., 2006, 54, p 1553–1556

    Article  Google Scholar 

  10. A.F. Padilha, I.F. Machado, and R.L. Plaut, Microstructures and Mechanical Properties of Fe-15%Cr-15%Ni Austenitic Stainless Steels Containing Different Level of Niobium Addition Submitted to Various Processing Stages, J. Mater. Process. Technol., 2005, 170, p 89–96

    Article  Google Scholar 

  11. W. Haitao, Z.H. Qi, Y. Huashun, Z.H. Zhenya, C. Hongwei, and M. Guanghui, Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Steel, Trans. Tianjin Univ., 2009, 15, p 457–462

    Article  Google Scholar 

  12. Y. Zhang, Y. Sun, Sh. Guan, X. Deng, and X. Yan, Effect of Titanium and Tungsten on the Structure and Properties of Heat Abrasion Resistant Steel, Mater. Sci. Eng. A, 2008, 478, p 214–220

    Article  Google Scholar 

  13. B. Piekarski, Effect of Nb and Ti Additions on Microstructure, and Identification of Precipitates in Stabilized Ni-Cr Cast Austenitic Steels, Mater. Charact., 2001, 47, p 181–186

    Article  Google Scholar 

  14. G.D. Barbabela, L.H. de Almeida, T.L. da Silveria, and I.L. May, Role of Nb in Modification the Microstructure of Heat Resistant Cast HP Steel, Mater. Charact., 1991, 26, p 193–197

    Article  Google Scholar 

  15. J. Laigo, F. Christien, R. Legall, F. Toncret, and F. Furtado, SEM, EDS, EPMA-WDS and EBSD Characterization of Carbides in Hp Type Heat Resistant Alloy, J. Mater. Charact., 2008, 17, p 1580–1585

    Article  Google Scholar 

  16. F.C. Nunes, L.H. de Almeida, J. Dille, J.L. Delpancke, and I. Le May, Microstructure Changes Caused by Yttrium Addition to NbTi-Modified Centrifugally Cast HP-Type Stainless Steels, Mater. Charact., 2007, 58, p 132–142

    Article  Google Scholar 

  17. B. Piekarski, Effect of Nb, Ti and Si Additions on the Liquidus and Solidus Temperature and Primary Microstructure Refinement in 0.3C-30Ni-18Cr Cast Steel, Mater. Charact., 2010, 61, p 181–186

    Google Scholar 

  18. M. Durand, The Microstructure of Steels and Cast Irons, Springer, Berlin, 2004

    Book  Google Scholar 

  19. R. Dehmolaei, M. Shamanian, and A. Kermanpur, Effect of Solution Annealing on Weldability of Aged Alloy 800/25Cr-35Ni Steel Dissimilar Welds, Sci. Technol. Weld. Join., 2008, 13, p 515–523

    Article  Google Scholar 

  20. X. Wu, J. Xing, H. Fu, and X. Zhi, Effect of Titanium on the Morphology of Primary M7C3 Carbides in Hypereutectic High Chromium White Iron, Mater. Sci. Eng. A, 2007, 457, p 180–185

    Article  Google Scholar 

  21. H. Chen, Z.Ch. Chang, J. Lu, and H. Lin, Effect of Niobium on Wear Resistance of 15%Cr White Cast Iron, Wear, 1993, 166, p 197–201

    Article  Google Scholar 

  22. X. Zhi, J. Xing, H. Fu, and Y. Gao, Effect of Titanium on the As-Cast Microstructure of Hypereutectic High Chromium Cast Iron, Mater. Charact., 2008, 59, p 1221–1226

    Article  Google Scholar 

  23. S.R. Shatynski, The Thermochemistry of Transition Metal Carbides, Oxid. Met., 1979, 13, p 105–117

    Article  Google Scholar 

  24. E. Rudy, Ternary Phase Equilibria in Transition Metal-Boron, Carbon, Silicon Systems, Part V, Compendium of Phase Diagram Data, AFML-TR-65-2, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, 1967

    Google Scholar 

  25. M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1936

    Google Scholar 

  26. F.D. Richardson, The Thermodynamics of Metallurgical Carbides and of Carbon in Iron, J. Iron Steel Inst., 1953, 175, p 33

    Google Scholar 

  27. W.A. Moffatt, The Handbook of Binary Phase Diagrams, General Electric, Schenectady, NY, 1976

    Google Scholar 

  28. A.M. Babakr, A. Al Ahmari, K. Al Jumayiah, and F. Habiby, Sigma Phase Formation of Cast Iron-Chromium-Nickel Alloys, J. Miner. Mater. Charact. Eng., 2008, 17, p 127–145

    Google Scholar 

  29. G.D. de Almeida, L.H. de Almeida, T.L. da Silveria, and I.L. May, Niobium Addition in HP Heat Resistant Cast Stainless Steels. Niobium Addition in HP Heat Resistant Cast Stainless Steels, Mater. Charact., 1992, 29, p 387–396

    Article  Google Scholar 

  30. R. Voicu, E. Andrieu, D. Poquillon, J. Furtado, and J. Lacaze, Microstructure Evolution of HP40-Nb Alloys During Aging Under Air at 1000°C, Mater. Charact., 2009, 60, p 1020–1027

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Isfahan Casting Industries (ICI) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Javaheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaheri, V., Shahri, F., Mohammadnezhad, M. et al. The Effect of Nb and Ti on Structure and Mechanical Properties of 12Ni-25Cr-0.4C Austenitic Heat-Resistant Steel after Aging at 900 °C for 1000 h. J. of Materi Eng and Perform 23, 3558–3566 (2014). https://doi.org/10.1007/s11665-014-1009-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1009-5

Keywords

Navigation