Skip to main content
Log in

Synthesis of SnFe2O4 Nanomaterials Via High Energy Ball Milling of SnO (Stannous) and α-Fe2O3 (Hematite) Solid Precursors

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The synthesis of single phase tin-ferrite, SnFe2O4, from tin (II) oxide or stannous oxide (SnO), and hematite (α-Fe2O3) solid precursors was carried out via high energy ball milling (HEBM) under wet condition involving the addition of controlled amounts of acetone. The stoichiometric amounts of the precursor materials were ball milled continuously for up to 22 h in a Spex-8000D mill using a ball-to-powder ratio of 40:1, with hardened stainless steel balls in WC-lined jars. The time-dependent formation of the SnFe2O4 based on combined X-ray diffraction and room temperature Mössbauer spectroscopy (MS) measurements revealed reaction enhancements associated with particles size reduction. The 22 h milled material indicated that synthesized SnFe2O4 had a particle size of 10.91 nm, coercivity of 4.44 mT, magnetic saturation/remanent ratio (M r/M s) of 0.085, while its superparamagnetic behavior was confirmed based on the combined MS and vibrating sample magnetometer measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Néel, Superparamagnetisme de grains tres fins antiferromagnetiques, C. R. Acad Sci., 1961, 252, p 4075–4080 (Translated in Selected Works of L. Néel (Kurti, N., ed.), New York, Gordon and Breach, 1988, p 107–110)

  2. R.W. Chantrell and K. O’Grady, The Magnetic Properties of Fine Particles, Applied Magnetism, C.D. Wright and G. Asti, Ed., Kluwer Academic Publishers, The Netherlands, 1994, p 113–164

    Google Scholar 

  3. T. Nakamura, T. Tsutaoka, and K. Hatakeyama, Frequency Dispersion of Permeability in Ferrite Composite Materials, J. Magnet. Magnet. Mater., 1994, 138(3), p 319–328

    Article  CAS  Google Scholar 

  4. T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, and K. Hatakeyama, Frequency Dispersion and Temperature Variation of Complex Permeability of Ni-Zn Ferrite Composite Materials, J. Appl. Phys., 1995, 78, p 3983–3991

    Article  CAS  Google Scholar 

  5. T.M. Clark and B.J. Evans, Enhanced Magnetization and Cation Distributions in Nanocrystalline ZnFe2O4: A Conversion Electron Mössbauer Spectroscopic Investigation, IEEE Trans. Magnet., 1997, 33(5 Part 2), p 3745–3747

    Article  CAS  Google Scholar 

  6. J.A. Jacobs and T.F. Kilduff, Engineering Materials Technology, Structures, Processing, Properties, and Selection, 5th ed., Pearson Prentice Hall, USA, 2005

    Google Scholar 

  7. H.M. Yang, X.C. Zhang, A.D. Tang, and G.Z. Qui, Cobalt Ferrite Nanoparticles Prepared by Coprecipitation/Mechanochemical Treatment, Chem. Lett., 2004, 33, p 826–827

    Article  CAS  Google Scholar 

  8. G. Ennas, G. Marongiu, S. Marras, and G. Piccaluga, Mechanochemical Route for the Synthesis of Cobalt Ferrite-Silica and Iron-Cobalt Alloy-Silica Nanocomposites, J. Nanopart Res., 2004, 6, p 99–105

    Article  CAS  Google Scholar 

  9. S. Bid and S.K. Pradhan, Microstructure Characterization and Phase Transformation Kinetic study of mechanosynthesized Non-stoichiometric CdF2O4 by Rietveld’s Analysis, Jpn. J. Appl. Phys., 2004, 43, p 5455–5464

    Article  CAS  Google Scholar 

  10. M. Mozaffari and J. Amighian, Preparation of Al-Substituted Ni Ferrite Powders Via Mechanochemical Processing, J. Magn. Mater., 2003, 260, p 244–249

    Article  CAS  Google Scholar 

  11. H.M. Widatallah and F.J. Berry, The Influence of Mechanica Milling and Subsequent Calcination on the Formation of Lithium Ferrites, J. Solid State Chem., 2002, 164, p 230–236

    Article  CAS  Google Scholar 

  12. Z.T. Lui and O.N.C. Uwakweh, Ball Milling of Fe-Zn Intermetallics, J. Mater. Res., 1996, 11(7), p 1665–1672

    Article  Google Scholar 

  13. Z. Lui and O.N.C. Uwakweh, Mossbauer Effect Study of Mechanically Alloyed Γ and Γ1-Fe-Zn Intermediate Phases, Metall. Mater. Trans. A, 1997, 28 A, p 743–747

    Google Scholar 

  14. O. Uwakweh, Z. Lui, A. Jordan, B. Chakoumakos, S. Spooner, and P. Maziasz, Neutron Diffraction and Phase Evolution of the Mechanically Alloyed Intermetallic Compound ς-FeZn, Metall. Mater. Trans. A, 2000, 31 A, p 2739–2745

    Article  Google Scholar 

  15. C.C. Koch, Mechanical Milling and Alloying, Materials Science and Technology, R.W. Cahn, P. Haasen, and E.J. Kramer, Ed., VCH Publishers, Weinheim, 1991, p 193–245

    Google Scholar 

  16. C. Suryanarayana, Mechanical Alloying, Progr. Mater. Sci., 2001, 46, p 1–184

    Article  CAS  Google Scholar 

  17. J. Ding, W.M. Miao, P.G. McCormick, and R. Street, High Magnetic Performance in Mechanically Alloyed Co-Substituted Fe3O4, J. Appl. Phys. Lett., 1994, 65(24), p 3135–3136

    Article  CAS  Google Scholar 

  18. J. Ding, P.G. McCormick, and R. Street, Formation of Spinel Mn-Ferrrite During Mechanical Alloying, J. Magn. Magn. Mater., 1997, 171(3), p 309–314

    Article  CAS  Google Scholar 

  19. N. Guigue-Millot, S. Begin-Colin, Y. Champion, M.J. Hytch, G. Le Caer, and P. Perriat, Control of Grain Size and Morphologies of Nanograined Ferrites by Adaptation of the Synthesis Route: Mechanosynthesis and Soft Chemistry, J. Solid State Chem., 2003, 170(1), p 30–38

    Article  CAS  Google Scholar 

  20. V. Sepelák, U. Steinike, D.C. Uecker, S. Wissmann, and K.D. Becker, Structural Disorder in Mechanosynthesized Zinc Ferrite, J. Solid State Chem., 1998, 135(1), p 52–58

    Article  Google Scholar 

  21. E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Kluwer Academic Publishers, Boston, 2001

    Google Scholar 

  22. T. Verdier, N. Nachbaur, and M. Jean, Mechanosynthesis of Zinc Ferrite in Hardened Steel Vials: Influence of ZnO on the Appearance of Fe(II), J. Solid State Chem., 2005, 178, p 3243–3250

    Article  CAS  Google Scholar 

  23. V. Šepelák, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, and K.D. Becker, Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Enhanced Magnetization in Nanosized MgFe2O4 Prepared by a One-Step Mechanochemical Route, Chem. Mater., 2006, 18, p 3057–3067

    Google Scholar 

  24. F. Goya and H.R. Rechenberg, On the Magnetic Properties of Mechanosynthesized and Ball Milled Spinel Ferrites, Mater. Sci. Forum, 2002, 403, p 127–132

    Article  CAS  Google Scholar 

  25. R.H. Kodama, S.A. Makhlouf, and A.E. Berkowitz, Finite Size Effects in Antiferromagnetic NiO Nanoparticles, Phys. Rev. Lett., 1997, 79(7), p 1393–1396

    Article  CAS  Google Scholar 

  26. N.A. Drokin, E. Yu Aksenova, and Yu.A. Mamalui, Photoconductivity in Tin-Doped Magnetite, Soviet Phys. Solid State, 1984, 26, p 1837–1838

    CAS  Google Scholar 

  27. F.J. Berry and Ö. Helgason, Mossbauer Spectroscopic Properties of Tin-Doped Iron Oxides, Hyperfine Interact., 2000, 126(1–4), p 269–275

    Article  CAS  Google Scholar 

  28. F. Liu, T. Li, and H. Zheng, Structure and Magnetic Properties of SnFe2O4 Nanoparticles, Phys. Lett. A, 2004, 323, p 305–309

    Article  CAS  Google Scholar 

  29. Available at www.SEECO.us

  30. M.R. Anantharaman, S. Reijne, J.P. Jacobs, H.H. Brongersma, R.H.H. Smits, and K. Seshan, Preferential Exposure of Certain Crystallographic Planes on the Surface of Spinel Ferrites: A Study by LEIS on Polycrystalline Spinel Ferrite Surfaces, J. Mater. Sci., 1999, 34, p P4279–P4283

    Article  Google Scholar 

  31. H. Knözinger and P. Ratnaswamy, Catalytic Aluminas: Surface Models and Characterization of Surface Sites, Catal. Rev., 1978, 17(1), p 31–70

    Article  Google Scholar 

  32. M. Shelef, M.A.Z. Wheeler, and H.C. Yao, Ion Scattering Spectra from Spinel Surfaces, Surf. Sci., 1975, 47, p 697–703

    Article  CAS  Google Scholar 

  33. H.C. Yao and M. Shelef, Nitric Oxide and Carbon Monoxide Chemisorption on Cobalt-Containing Spinels, J. Phys. Chem., 1974, 78(24), p 2490–2496

    Article  CAS  Google Scholar 

  34. J.P. Beaufils and J. Barbaux, Determination, Par Diffraction Differentielle de Neutrons, des Faces Cristallines Exposees par des Supports de Catalyseurs en Poudre, J. Chim. Phys., 1981, 78, p 347–352

    CAS  Google Scholar 

  35. J.P. Beaufils and J. Barbaux, Study of Adsorption on Powders by Surface Differential Diffraction Measurements. Argon on Co3O4, J. Appl. Cryst., 1982, 15, p 301–307

    Article  CAS  Google Scholar 

  36. F. Li, H. Wang, L. Wang, and J. Wang, Magnetic Properties of ZnFe2O4 Nanoparticles Produced by a Low-Temperature Solid State Reaction Method, J. Magn. Magn. Mater., 2007, 309(2), p 295–299

    Article  CAS  Google Scholar 

  37. B.D. Culity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, USA, 2001

    Google Scholar 

  38. L. Néel, Some Theoretical Aspects of Rock Magnetism, Adv. Phys., 1955, 4, p 191–243

    Article  Google Scholar 

  39. F.X. Liu and T.Z. Li, Synthesis and Magnetic Properties of SnFe2O4 Nanoparticles, Mat. Lett., 2005, 59(2–3), p 194–196

    Article  CAS  Google Scholar 

  40. Y. Kim, II, D. Kim, and C.S. Lee, Synthesis and Characterization of CoFe2O4 Magnetic Nanoparticles Prepared by Low Temperature-Controlled Coprecipitation Method, Physica B, 2003, 337(1–4), p 42–51

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The support of NSF-DMR PREM at UPRM based on Grant No. 0351449 for the authors is hereby acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswald N. C. Uwakweh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uwakweh, O.N.C., Más, R., Morales, C. et al. Synthesis of SnFe2O4 Nanomaterials Via High Energy Ball Milling of SnO (Stannous) and α-Fe2O3 (Hematite) Solid Precursors. J. of Materi Eng and Perform 20, 1157–1162 (2011). https://doi.org/10.1007/s11665-010-9632-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9632-2

Keywords

Navigation