Skip to main content
Log in

Equicohesion: Intermediate Temperature Transition of the Grain Size Effect in the Nickel-Base Superalloy PM 3030

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The intermediate temperature transition of the grain size effect on the yield strength of PM 3030 is investigated using compression tests from room temperature to 1200 °C. It is found that grain boundary strengthening is strong at low temperature which is consistent with conventional Hall–Petch hardening. However, the grain boundary contribution to strength diminishes exponentially at intermediate temperature and vanishes at the equicohesion point. Above the equicohesion point, finer grain structure leads to material softening primarily due to grain boundary diffusion and deformation processes. Maximum softening occurs at T soft-max which is about 70% of the melting point, then decreases logarithmically with further increase in temperature, and vanishes at the melting point. This can well be rationalized by the overwhelming dominance of volume diffusion over grain boundary diffusion at temperatures close to the melting point, which decreases the impact of grain size on material strength. An exponential transition from the Hall–Petch behavior to the diffusion-based behavior provides an overall better fit of test data as compared to a linear transition. This study provides a contribution to the understanding of equicohesion and variation of the grain size effect on material strength and can be particularly crucial for components used at intermediate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.O. Hall, The Deformation of Mild Steel: III Discussion of Results, Phys. Soc. B, 64, 1951, p 747–753

    Article  ADS  Google Scholar 

  2. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 174, 1953, p 25–28

    CAS  Google Scholar 

  3. W.A. Counts, M.V. Braginsky, C.C. Battaile, E.A. Holm, Predicting the Hall-Petch Effect in FCC Metals Using Non-local Crystal Plasticity, Int. J. Plast., 24, 2008, p 1243–1263

    Article  MATH  CAS  Google Scholar 

  4. R. Raj, M.F. Ashby, On the Grain Boundary Sliding and Diffusional Creep, Metall. Trans., 2, 1971, p 1113–1127

    Article  ADS  Google Scholar 

  5. J.R. Spingarn, W.D. Nix, Diffusional Creep and Diffusionally Accommodated Grain Rearrangement, Acta Metall., 26, 1978, p 1389–1398

    Article  CAS  Google Scholar 

  6. I.S. Servi and N.J. Grant, Creep and Stress Rupture Behavior of Aluminum as a Function of Purity, J. Metals, 1951, p 909–916

  7. I.S. Servi and N.J. Grant, Structure Observations of Aluminum Deformed in Creep at Elevated Temperature, J. Metals, 1951, p 917–922

  8. G.E. Dieter, Mechanical Metallurgy, SI Metric Editions, McGraw-Hill Book Company, London, 1986

  9. R.L. Cairns, L.R. Curwick, J.S. Benjamin, Grain Growth in Dispersion Strengthened Superalloys by Moving Zone Heat Treatments, Metall. Trans. A, 6, 1975, p 179–188

    Article  CAS  Google Scholar 

  10. J.S. Benjamin, Dispersion Strengthened Superalloys by Mechanical Alloying, Metall. Trans., 1, 1970, p 2943–2951

    CAS  Google Scholar 

  11. M. Nganbe, M. Heilmaier, High Temperature Strength and Failure of the Ni-base Superalloy PM 3030, Int. J. Plast., 25, 2009, p 822–837

    Article  MATH  CAS  Google Scholar 

  12. B. deMestral, G. Eggeler, H.-J. Klam, On the Influence of Grain Morphology on the Creep Deformation and Damage Mechanisms in Directionally Solidified and Oxide Dispersion Strengthened Superalloys, Metall. Mater. Trans. A, 27, 1996, p 879–890

    Article  Google Scholar 

  13. J.J. Stevens, W.D. Nix, The Effect of Grain Morphology on Longitudinal Creep Properties of INCONEL MA 754 at Elevated Temperature, Metall. Mater. Trans. A, 16, 1985, p 1307–1324

    Article  ADS  Google Scholar 

  14. M. Nganbe, M. Heilmaier, Modelling of Particle Strengthening in the γ′ and Oxide Dispersion Strengthened Nickel-base Superalloy PM 3030, Mater. Sci. Eng. A, 387389, 2004, p 609–612

    Google Scholar 

  15. R.F. Singer, R.C. Benn, and S.K. Kang, Creep Rupture Properties of Inconel Alloy MA 6000, Frontiers of High Temperature Materials, J.S. Benjamin and R.C. Benn, Ed., Inco Alloy Product Company, 1983, Vol. 2, p 336–357

  16. H.J. Frost, M.F. Ashby, Deformation-Mechanism-Maps. The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982

    Google Scholar 

  17. U. Bayerlein, Zur Ermittlung der Textur- und Gefügeabhängigkeit der Elastischen Eigenschaften Sowie der Einkristallkonstanten von Superlegierungen bei Höheren Temperaturen (on the Determination of the Texture and Grain Structure Dependence of the Elastic Properties and Single Crystal Constants of Superalloys at High Temperatures), VDI Fortschrifttsberichte, 1991, 5(236), Düsseldorf (in German)

  18. M. Nganbe, M. Heilmaier, L. Schultz, Dependence of Mechanical Strength on Grain Structure in the γ′ and Oxide Dispersion Strengthened Nickelbase Superalloy PM 3030, Z. Metallkunde 96(6), 2005, p 625–631

    CAS  Google Scholar 

  19. M. Mabuchi, K. Higashi, Strengthening Mechanisms of Mg-Si Alloys, Acta Mater., 44(11), 1996, p 4611–4618

    Article  CAS  Google Scholar 

  20. M. Nganbe, “Untersuchung und Optimierung der γ′- und Oxiddispersionsgehärteten (ODS) Nickelbasissuperlegierung PM 3030 (Investigation and Optimization of the γ′- and Oxide Dispersion Strengthened (ODS) Nickel-base Superalloy PM 3030,” Dissertation thesis, Cuviller Verlag, Göttingen, 2002 (in German)

  21. M. Heilmaier, M. Nganbe, and F.E.H. Müller, On the Creep and Superplastic Behavior of the ODS Nickel-based Superalloy PM 3030, Honorary Symposium for Professor Oleg D. Sherby, Deformation, Processing and Properties of Structural Materials, E.M. Taleff et al., Ed. (Warrendale, PA), TMS, 2000, p 287–298

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Nganbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nganbe, M., Fahim, A. Equicohesion: Intermediate Temperature Transition of the Grain Size Effect in the Nickel-Base Superalloy PM 3030. J. of Materi Eng and Perform 19, 395–400 (2010). https://doi.org/10.1007/s11665-009-9512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9512-9

Keywords

Navigation