Skip to main content
Log in

Fabrication of 3-D Submicron Glass Structures by FIB

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fabrication characteristic of focused ion beam (FIB) for Pyrex glass was investigated. FIB has several advantages such as high resolution, high material removal rates, low forward scattering, and direct fabrication in selective area without any etching mask. In this study, FIB-etched Pyrex glass was used for fast fabrication of 3-D submicron structures. A glass structure with 0.39 μm in width was fabricated. The experimental results in terms of limiting beam size, ion dose (ion/cm2), and beam current are discussed. The influence of XeF2 gas on FIB glass fabrication was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shan, X. C. R. Maeda and Murakoshi, Y., (2002) Development of a micro hot embossing process for fabricating micro-optical devices. Proc. SPIE, 4936, 67–75.

    Article  Google Scholar 

  2. Effenhauser, C. S., Manz, A., Widmer, H. M., (1993) Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Anal. Chem. 65, 652637–2642.

    Article  Google Scholar 

  3. Fan, Z. H., Harrison, D. J., (1994) Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 66, 177–184.

    Article  CAS  Google Scholar 

  4. Simpson, P·C., Woolley, A.T., Mathies, R.A., (1998) Micro- fabrication Technology for the Production of Capillary Array Electrophoresis Chips. Biomed. Microdevices, 1, 7–25.

    Article  CAS  Google Scholar 

  5. Iliescu, C., Miaob, J., Tay, F. E. H., (2005) Optimization of an amorphous silicon mask PECVD process for deep wet etching of Pyrex glass. Surface & Coatings Technology, 192, 43–47.

    Article  CAS  Google Scholar 

  6. Gretillat, M. A., et al., (1997) A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets. Sens. Actuators A 60, 219–222.

    Article  CAS  Google Scholar 

  7. Croman, T., Enokson, P., Stemme, G., (1998) Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask. J. Micromech. Microeng. 8, 84–87.

    Article  Google Scholar 

  8. Youn, S. W., Kang, C.G., (2005) Maskless pattern fabrication on Pyrex 7740 glass surface by using nano-scratch with HF wet etching. Scripta Materialia 52, 117–121.

    Article  CAS  Google Scholar 

  9. Li, X. T. Abe, Liu, Y. and Esashi, M., (2001) Deep reactive ion etching of Pyrex glass using SF6 plasma. Sensors and Actuators A, 87, 139–145.

    Article  CAS  Google Scholar 

  10. T. Akashil, Y. Yoshimura, and S. Higashiyama, Deep Reactive Ion Etching of Pyrex Glass Using a Bonded Silicon Wafer as an Etching Mask, in Micro Electro Mechanical Systems, 18th IEEE International Conference, 2005, p 520–523

  11. Belloy, E., et al. (2000) The introduction of powder blasting for sensor and microsystem applications. Sensors and Actuators A, 84, 330–337.

    Article  CAS  Google Scholar 

  12. Slikkerveer, P·S., Bouten, de Hass, P·C.P., F·C.M., (2000) High quality mechanical etching of brittle materials by powder blasting. Sensors and Actuators A, 85, 296–303.

    Article  CAS  Google Scholar 

  13. Melngailis, J., (1987) Critical review: focused ion beam technology and applications. J. Vac. Sci. Technol. B, 5, 469–495.

    Article  CAS  Google Scholar 

  14. Ishitani, T., Ohnishi, T., Madakoro, Y., and Kawanami, Y., (1991) Focused -ion-beam ‘cutter’ and ‘attacher’ for micromachining and device transplantation. J. Vac. Sci. Technol. B, 9, 2633–2637.

    Article  CAS  Google Scholar 

  15. Kirk, E. C. G. et al., (1988) Scanning ion microscopy and microsectioning of electron beam recrystallized silicon on insulator devices. J. Vac. Sci. Technol. B, 6, 1940–1943.

    Article  CAS  Google Scholar 

  16. Ryssel, H., Ruge, I., (1986) Ion Implantation. Wiley, New York.

    Google Scholar 

  17. Young, R. J. E. C. G. Kirk, Williams, D. A. and Ahmed, H., (1990) Fabrication of planar and cross-sectional TEM specimens using a focused ion beam. Mater. Res. Soc. Symp. 199, 205–216.

    Article  Google Scholar 

  18. Taniguchi, J., Koga, K., Kogo, Y., Miyamoto, I., (2006) Rapid and three-dimensional nanoimprint template fabrication technology using focused ion beam lithography. Microelectronic Engineering, 83, 940–942.

    Article  CAS  Google Scholar 

  19. F. Yongqi and N.K.A. Bryan, Focused Ion Beam Technique: Features Compared with Electron Beam Lithography and Laser Direct Writing for Fabrication of Optical Elements with Continuous Relief, in Proceeding of SMA Symposium, 2004

  20. Chen, C. H., Liu, C. P., Lee, Y. C., Hsiao, F. B., Chiu, C. Y., Chung, M. H. and Chiang, M. H., (2006) IR-laser assisted micro/nano-imprinting. Journal of Micromechanics and Microengineering, 16, 1463–1467.

    Article  Google Scholar 

  21. Li, W., Dimov, S. and Lale, G., (2007) Focused-ion-beam direct structuring of fused silica for fabrication of nano-imprinting templates. Journal of Microelectronic Engineering, 84, 829–832.

    Article  CAS  Google Scholar 

  22. Li, W., Lalev, G., Dimov, S., Zhao, H. and Pham, D. T., (2007) A study of fused silica micro/nano patterning by focused-ion-beam. Journal of Applied Surface Science, 253, 3608–3614.

    Article  CAS  Google Scholar 

  23. Oostra, D. J., Haring, A. and de Viries, A. E., (1986) Sputtering of SiO2 in a XeF2 and in a Cl2 atmosphere. J. Vac. Sci. Technol., 6, 1278–1282.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, Kaoshiung, Taiwan, for equipment access and technical support, and National Science Council (NSC) for their financial supports to the project (Grant numbers: NSC97-2218-E-006-009, NSC94-2213-E-110-043, NSC 94-2212-E110-015, NSC94-2622-E-110-017-CC3, and NSC95-2221-E-110-011-). The authors would like to thank the Center for Micro/Nano Technology Research, National Cheng Kung University, Tainan, Taiwan, for equipment access and technical support as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.C. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, C., Shen, S. & Wu, J. Fabrication of 3-D Submicron Glass Structures by FIB. J. of Materi Eng and Perform 18, 878–885 (2009). https://doi.org/10.1007/s11665-008-9318-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-008-9318-1

Keywords

Navigation