Skip to main content

Advertisement

Log in

Reticulated Porous Multiphase Ceramics with Improved Compressive Strength and Fracture Toughness

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A multiphase reticulated porous ceramic (RPC) as Si3N4–Al2O3–SiO2 was fabricated by replication techniques. Proper volumes of additives and twice sinter- twice immerse process endow the RPC an excellent crack healing and submerging property. The compressive strength and fracture toughness improved owing to the crack bridging behavior. The existence of pores in struts in RPC blunt the crack tip and increased the external force needed to propagate the crack. The mechanisms play a beneficial role in enhancing the compressive strength and fracture strength. Si3N4 RPC with additives of 5%Al and 5% Al2O3 yielded the compressive strength of 9.8 MPa and fracture toughness of 0.3 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.W. Rice, Summary of porosity and micro-cracking applications, special fabrication, and engineering. Porosity of Ceramics, Chapter 10, Ed., Marcel Dekker, New York, 1998

  2. Williams, E.J.A.E., Evans, J.R.G. (1996). Expanded Ceramic Foam. J. Mater. Sci. 31:559–563

    Article  CAS  Google Scholar 

  3. Bhaduri, S.B. (1994). Science and Technology of Ceramic Foams. Adv. Performance Mater. 1:205–220

    Article  CAS  Google Scholar 

  4. Sheppard, L.M. (1993). Porous Ceramics: Processing and Application. Ceram. Trans. 31:2–3

    Google Scholar 

  5. K. Schwartzwalder and A.V. Somers, Method of Making Porous Ceramic Articles, U.S. Patent 3090094, 1963

  6. Saggio-Woyaansky, J., Scottetal, C.E. (1992). Processing of Porous Ceramics. Am. Ceram. Soc. Bull. 71(11):1674–1682

    Google Scholar 

  7. Taguchi, S.P., Ribeiro, S. (2004). Silicon Nitride Oxidation Behaviour at 1000 and 1200 ºC. J. Mater. Process. Technol. 147:336–342

    Article  CAS  Google Scholar 

  8. Rosenflanz, A., (1999). Silicon Nitride and Sialon Ceramics. Curr. Opin. Solid State Mater. Sci. 4:453–459

    Article  Google Scholar 

  9. Sancho, J.P., Pero-Sanz, J.A., Verdeja, L.F. (2003). Toughness of Si[3]N[4] Ceramics Obtained by Precipitating Sintering Aids as Hydroxides. Materials Character. 50:11–22

    Article  CAS  Google Scholar 

  10. Chen, D.Y., Zhang, B.L., Zhang, H.R. (2003). Combustion Synthesis of Network Silicon Nitride Porous Ceramics. Ceram. Int. 29:363–364

    Article  CAS  Google Scholar 

  11. Zhu, X., Jiang, D., Tan, S. (2002). The Control Of the Slurry Rheology in the Processing of Reticulated Ceramics. Mater. Res. Bull.. 37:541–553

    Article  CAS  Google Scholar 

  12. Deng, Z.Y., Shi, J.L., Zhang, Y.F., Lai, T.R.,Guo, J.K. (1999). Creep and Creep Recovery Behavior on Silicon-Carbide-Particle-Reinforced Alumina. J. Am. Ceram. Soc. 82:944–952

    Article  CAS  Google Scholar 

  13. Han, G.W., Feng, D., Yin, M. (1997). Ceramic/Aluminum Co-Continuous Composite Synthesized by Reaction Accelerated Melt Infiltration. Mater. Sci. Eng. A. 225(1–2):204–207

    Article  Google Scholar 

  14. Natansohn, S., Pasto, A.E., Rourke, W.J. (1993). Effect of Powder Surface. Modifications on the Properties of Silicon Nitride Ceramics. J. Am. Ceram. Soc. 76(9):2273–2284

    Article  CAS  Google Scholar 

  15. Gibson, L. J., Ashby, M. F. (1999). Cellular Solids, Structure and Properties 2nd ed. University Press,Cambridge

    Google Scholar 

  16. D.J. Green, Fabrication and Mechanical Properties of Lightweight Ceramics Produced by Sintering of Hollow Spheres, Final Report on AFOSR contract No.F49620-83-C0078, 1984

  17. Green, D.J. (1983) J. Am. Ceram. Soc. 66:288–292

    Article  Google Scholar 

  18. Maiti, K., Ashby, M.F., Gibson, L.J. (1984). Fracture Toughness of Brittle Cellular Solids. Scripta Metallurgica. 18:213–217

    Article  CAS  Google Scholar 

  19. Deng, Z.Y., She, J., Inagaki, Y., Yang, J.F., Ohji, T., Tanaka, Y. (2004) Re-inforcement by Crack-Tip Blunting in Porous Ceramics. J. Eur. Ceram. Soc. 24:2055–2059

    Article  CAS  Google Scholar 

  20. Awaji, H., Sakaida, Y. (1990). V-notch Technique for Single-Edge Notched Beam and Chevron Notch Methods. J. Am. Ceram. Soc. 73:3522–3523

    Article  CAS  Google Scholar 

  21. Awaji, H., Choi, S. M., Jayaseelan, D.D. (2001). Indirect Estimation of Critical Frontal Process-Zone Size Using a Single-Edge V-Notched-Beam Technique. J. Ceram. Soc. Japan 109:591–595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong province (Y2006F03). Part of this research was done at the Institute of Materials Science and Technology of Jinan University. The authors are owing a debt of gratitude to the technical staff of these two institutions for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-ran Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Sr., Geng, Hr., Hui, Lh. et al. Reticulated Porous Multiphase Ceramics with Improved Compressive Strength and Fracture Toughness. J of Materi Eng and Perform 16, 113–118 (2007). https://doi.org/10.1007/s11665-006-9018-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-006-9018-7

Keywords

Navigation