Skip to main content
Log in

Fe3O4-CuO-MgNb2O6 Ternary Ceramics with Heterogeneous Interfaces for Efficient Microwave Absorption

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fe3O4-CuO-MgNb2O6 ternary ceramics were synthesized using solid reaction sintering and the microwave absorption performance was investigated. Remarkable absorption characteristics were observed in the composite material, with optimal reflection loss of −53.3 dB at 8.6 GHz and effective bandwidth of 3.8 GHz (6.9–10.7 GHz) at a thickness of 2.8 mm. The decrease in porosity and simultaneous increase in grain size impact the motion of domain walls, leading to magnetic loss. Furthermore, reduction in porosity facilitates closer proximity of grains, thereby reducing high-resistivity borders and improving the mobility of carriers. Consequently, this leads to an increase in the imaginary part of the complex permittivity. The introduction of three phases and grain growth synergistically contribute to interface and dipolar polarization, further enhancing the dielectric loss and properties related to microwave absorption. The Ansys HFSS (high-frequency structure simulator) results also prove that larger grain size positively affects impedance matching and microwave absorption performance in ceramics. By controlling the grain size of Fe3O4-CuO-MgNb2O6 ternary ceramics, it becomes possible to tailor the microwave absorption properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.L. Wang, Q. Wu, Y.G. Fu, and T. Liu, A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 86, 91 (2021).

    Article  CAS  Google Scholar 

  2. Y. Zhou, C. Yang, R. Li, D. Chen, Z. Ren, Y. Lu, and H. Xie, Ultra-thin Al2O3−Sr(1–x)GdxTiO3 composite ceramics with high microwave absorption performance. J. Mater. Sci. Mater. Electron. 32, 8788 (2021).

    Article  CAS  Google Scholar 

  3. S. Bao, Z. Song, R. Mao, Y. Li, S. Zhang, Z. Jiang, X. Li, and Z. Xie, Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption. J. Mater. Chem. C 9, 13860 (2021).

    Article  CAS  Google Scholar 

  4. C. Chen, L. Pan, S. Jiang, S. Yin, X. Li, J. Zhang, Y. Feng, and J. Yang, Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites. J. Eur. Ceram. Soc. 38, 1639 (2018).

    Article  CAS  Google Scholar 

  5. L. Zhang, W. Zhang, S.U. Rehman, S. Shen, Y. Liu, F. Long, H. Du, W. Dong, Y. Hu, H. Zou, and T. Liang, Optimization of microwave absorption properties of flaky FeSiAl magnetic alloy by surface modification. J. Alloys Compd. 949, 169756 (2023).

    Article  CAS  Google Scholar 

  6. W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, and N. Travitzky, A review of absorption properties in silicon-based polymer derived ceramics. J. Eur. Ceram. Soc. 36, 3681 (2016).

    Article  CAS  Google Scholar 

  7. W. Zhou, R.M. Yin, L. Long, H. Luo, W.D. Hu, Y.H. Ding, and Y. Li, Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 44, 12301 (2018).

    Article  CAS  Google Scholar 

  8. W. Zhong, B. Li, Z. Ma, C. Zhu, F. Yan, X. Zhang, and Y. Chen, Double salt-template strategy for the growth of N, S-codoped graphitic carbon nanoframes on the graphene toward high-performance electromagnetic wave absorption. Carbon 202, 235 (2023).

    Article  CAS  Google Scholar 

  9. W. Zheng, B. Wei, Z. Yao, J. Hou, L. Wan, J. Zhou, and A. AliHaidry, Study on mechanical properties and X-band microwave absorption properties of ER/SiCp/SiCf ternary composites. J. Magn. Magn. Mater. 540, 168450 (2021).

    Article  CAS  Google Scholar 

  10. R. Singh and V. Sharma, Investigations on sintering mechanism of nano tungsten carbide powder based on molecular dynamics simulation and experimental validation. Adv. Powder Technol. 33, 103724 (2022).

    Article  CAS  Google Scholar 

  11. C. Wang, Z.L. Guo, J. Wang, H.B. Sun, D.C. Chen, W.H. Chen, and X. Liu, Industry-oriented Fe-based amorphous soft magnetic composites with SiO2-coated layer by one-pot high-efficient synthesis method. J. Magn. Magn. Mater. 509, 166924 (2020).

    Article  CAS  Google Scholar 

  12. C. Wu, Y. Hu, S. Bao, G. Wang, P. Jiang, J. Chen, Z. Duan, and W. Deng, Microwave dielectric properties of low-temperature-fired MgNb2O6 ceramics for LTCC applications. RSC Adv. 10, 29835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Peng, C. Li, C. Tang, S. Liu, S. Huang, L. Qiu, and L. Deng, Crystal structures and microwave dielectric properties of novel MgCu2Nb2O8 ceramics prepared by two-step sintering technique. Materials 15, 8053 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Peng, C. Li, T. Yan, S. Huang, L. Qiu, and L. Deng, Novel (1–x)MgCu2Nb2O8 − xTiO2 composite ceramics with high Q×f and near-zero τf. Phys. Scr. 98, 095923 (2023).

    Article  Google Scholar 

  15. H. Pang, W. Pang, B. Zhang, and N. Ren, Excellent microwave absorption properties of the h-BN–GO–Fe3O4 ternary composite. J. Mater. Chem. C 6, 11722 (2018).

    Article  CAS  Google Scholar 

  16. A. Nag, R.S.C. Bose, K.S. Venu, and H. Singh, Influence of particle size on magnetic and electromagnetic properties of hexaferrite synthesised by sol-gel auto combustion route. Ceram. Int. 48, 15303 (2022).

    Article  CAS  Google Scholar 

  17. M. Rostami, M. Jafarpour, and M.H. Majles Ara, An investigation on the microwave absorption properties of Co–Al–Ti substituted barium hexaferrite-MWCNT nanocomposites. J. Alloys Compd. 872, 159656 (2021).

    Article  CAS  Google Scholar 

  18. M. Kaur, P. Kaur, and S. Bahel, Study of magnetic elastic and Ka-band absorption properties of Zn1xCoxFe2O4 (0.00 ≤ x ≤ 1.00) spinel ferrites. Mater. Sci. Eng. B 297, 116736 (2023).

    Article  CAS  Google Scholar 

  19. C. Shao, C. Ding, Y. Liu, Y. Ma, L. Zhang, X. Ren, S. Wu, B. Zhong, G. Wen, and X. Huang, Grain boundary capacitance effect in Iron-based magnetic composites for superior C-band microwave absorption. Chem. Eng. J. 466, 143162 (2023).

    Article  CAS  Google Scholar 

  20. S. Ur Rehman, J. Wang, Q. Luo, M. Sun, L. Jiang, Q. Han, J. Liu, and H. Bi, Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122 (2019).

    Article  CAS  Google Scholar 

  21. T. Yamanaka, H. Shimazu, and K. Ota, Electric conductivity of Fe2SiO4–Fe3O4 spinel solid solutions. Phys. Chem. Miner. 28, 110 (2001).

    Article  CAS  Google Scholar 

  22. N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, and A. Mondal, CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248 (2011).

    Article  CAS  Google Scholar 

  23. T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441 (2008).

    Article  CAS  Google Scholar 

  24. X. Song, X. Chen, G. Gou, H. Xu, Z. Zhang, L. Cui, T. Peng, and S. Zhu, Multi-interfaces regulated polyaniline/nano-Fe3O4/graphene ternary hybrids for ultra-broadband electromagnetic absorption. Macromol. Mater. Eng. 307, 2200512 (2022).

    Article  CAS  Google Scholar 

  25. H. Zheng, R. Li, S. Dong, W. Chen, L. Fan, W. Li, P. Zheng, L. Zheng, Y. Zhang, and L. Deng, Iron carbide interface modulating for synergies of 3D-graphene-like and iron-coated Fe3O4 particles for high microwave absorption performance. J. Alloys Compd. 945, 169283 (2023).

    Article  CAS  Google Scholar 

  26. K. Song, B. Yang, Z. Li, Y. Lv, Y. Yu, L. Yuan, X. Shen, and X. Hu, Direct synthesis of ACo2O4 (A = Ni, Cu, Fe, Zn) nanowires on carbon cloth as an oxygen electrode catalyst for rechargeable lithium-oxygen batteries. Appl. Surf. Sci. 529, 147064 (2020).

    Article  CAS  Google Scholar 

  27. R.P. Vasquez, CuO by XPS. Surf. Sci. Spectra 5, 262 (1998).

    Article  CAS  Google Scholar 

  28. F. Khairallah and A. Glisenti, XPS study of MgO nanopowders obtained by different preparation procedures. Surf. Sci. Spectra 13, 58 (2007).

    Article  Google Scholar 

  29. J. Xie, C. Zhen, L. Liu, L. Ma, D. Hou, H. Pang, and D. Zhao, Effects of calcination temperature on structure and magnetic properties of pure FeCo2O4 powders. Ceram. Int. 47, 11993 (2021).

    Article  CAS  Google Scholar 

  30. V.V. Atuchin, I.E. Kalabin, V.G. Kesler, and N.V. Pervukhina, Nb 3d and O 1s core levels and chemical bonding in niobates. J. Electron Spectrosc. Relat. Phenom. 142, 129 (2005).

    Article  CAS  Google Scholar 

  31. L.P.B. Reddy, H.G.R. Prakash, Y.T. Ravikiran, S.K. Ganiger, and V.J. Angadi, Structural and humidity sensing properties of niobium pentoxide-mixed nickel ferrite prepared by mechano-chemical mixing method. J. Mater. Sci. Mater. Electron. 31, 21981 (2020).

    Article  CAS  Google Scholar 

  32. Y. Akinay and A.O. Kizilcay, Computation and modeling of microwave absorbing CuO/graphene nanocomposites. Polym. Compos. 41, 227 (2019).

    Article  Google Scholar 

  33. N. Kumar, S.S. Parui, S. Limbu, D.K. Mahato, N. Tiwari, and R.N. Chauhan, Structural and optical properties of sol–gel derived CuO and Cu2O nanoparticles. Mater. Today: Proc. 41, 237 (2021).

    CAS  Google Scholar 

  34. N. Basavaraju, S.C. Prashantha, B.S. Surendra, T.R. Shashi Shekhar, M.R. Anil Kumar, C.R. Ravikumar, N. Raghavendra, and T.S. Shashidhara, Structural and optical properties of MgNb2O6 NPs: Its potential application in photocatalytic and pharmaceutical industries as sensor. Environ. Nanotechnol. Monit. Manag. 16, 100581 (2021).

    CAS  Google Scholar 

  35. T. Zhu, J. Jiang, J. Wang, Z. Zhang, J. Zhang, and J. Chang, Fe/Co redox and surficial hydroxyl potentiation in the FeCo2O4 enhanced Co3O4/persulfate process for TC degradation. J. Environ. Manag. 313, 114855 (2022).

    Article  CAS  Google Scholar 

  36. Z. Wang, C. Li, H. Xie, Z. Zhang, W. Huang, S. Ke, and L. Shu, Effect of grain size on flexoelectricity. Phys. Rev. Appl. 18, 064017 (2022).

    Article  CAS  Google Scholar 

  37. M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, and H. Wondratschek, Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. A 62, 115 (2006).

    Article  PubMed  Google Scholar 

  38. Y.C. You, H.L. Park, Y.G. Song, H.S. Moon, and G.C. Kim, Stable phases in the MgO-Nb2O5 system at 1250°C. J. Mater. Sci. Lett. 13, 1487 (1994).

    Article  CAS  Google Scholar 

  39. S. Liu, H. Li, R. Xiang, P. Zhang, X. Chen, Q. Wen, and H. Hu, Effect of substituting Al3+ for Ti4+on the microwave dielectric performance of Mg2Ti1-xAl4/3xO4 (0.01 ≤ x ≤ 0.09) ceramics. Ceram. Int. 47, 33064 (2021).

    Article  CAS  Google Scholar 

  40. Y. Zhang, C. Liu, X. Zhao, M. Yao, X. Miao, and F. Xu, Enhanced microwave absorption properties of barium ferrites by Zr4+-Ni2+ doping and oxygen-deficient sintering. J. Magn. Magn. Mater. 494, 165828 (2020).

    Article  CAS  Google Scholar 

  41. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M.J. Reece, and K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885 (2005).

    Article  Google Scholar 

  42. R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang, and X. Wu, Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions. J. Mater. Sci. Technol. 129, 15 (2022).

    Article  CAS  Google Scholar 

  43. N. Wang, Y. Wang, Z. Lu, R. Cheng, L. Yang, and Y. Li, Hierarchical core-shell FeS2/Fe7S8@C microspheres embedded into interconnected graphene framework for high-efficiency microwave attenuation. Carbon 202, 254 (2023).

    Article  CAS  Google Scholar 

  44. H. Zhao, Y. Cheng, Z. Zhang, J. Yu, J. Zheng, M. Zhou, L. Zhou, B. Zhang, and G. Ji, Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos. Part B-Eng. 196, 108119 (2020).

    Article  CAS  Google Scholar 

  45. W. Wang, Y. Wang, Z. Lu, R. Cheng, and H. Zheng, Hollow ZnO/ZnFe2O4 microspheres anchored graphene aerogels as a high-efficiency microwave absorber with thermal insulation and hydrophobic performances. Carbon 203, 397 (2023).

    Article  CAS  Google Scholar 

  46. Y. Wei, L. Zhang, C. Gong, S. Liu, M. Zhang, Y. Shi, and J. Zhang, Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J. Alloy. Compd. 735, 1488 (2018).

    Article  CAS  Google Scholar 

  47. J. Smit and H.P.J. Wijn, Physical Properties of Ferrites, Advances in Electronics and Electron Physics. ed. L. Marton (Academic Press, 1954), pp. 69–136.

    Google Scholar 

  48. Z. Liu, Z. Peng, and X. Fu, Structural and electromagnetic properties of Ni0.5Zn0.5HoxFe2-xO4 ferrites. Ceram. Int. 43, 14938 (2017).

    Article  CAS  Google Scholar 

  49. D. Yuping, H. Gaihua, L. Wei, and W. Ming, The effect of grain size on microwave electromagnetic properties of Mn4N. J. Supercond. Novel Magn. 29, 1303 (2016).

    Article  Google Scholar 

  50. T.S. Liu, N. Liu, S.R. Zhai, S.S. Gao, Z.Y. Xiao, Q.D. An, and D.J. Yang, Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. J. Alloy. Compd. 779, 831 (2019).

    Article  CAS  Google Scholar 

  51. S. Wang, A. Yang, S. Jiang, H. Ren, T. Xie, H. Peng, X. Yao, and H. Lin, Investigations on sintering behavior and microwave dielectric properties of MgNb2O6 ceramics doping with LiF. J. Mater. Sci. Mater. Electron. 32, 24320 (2021).

    Article  CAS  Google Scholar 

  52. Z.Q. Tian and L. Lin, Low temperature sintering and microwave dielectric properties of MgNb2O6 ceramics. J. Mater. Sci. Mater. Electron. 20, 867 (2009).

    Article  CAS  Google Scholar 

  53. S. Gao, N. Zhou, Q. An, Z. Xiao, S. Zhai, and Z. Shi, Facile solvothermal synthesis of novel hetero-structured CoNi–CuO composites with excellent microwave absorption performance. RSC Adv. 7, 43689 (2017).

    Article  CAS  Google Scholar 

  54. C. Wang, Y. Ma, Z. Qin, J. Wang, and B. Zhong, Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance. Appl. Surf. Sci. 569, 150812 (2021).

    Article  CAS  Google Scholar 

  55. J. Liu, H. Liang, and H. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. A Appl. Sci. Manuf. 130, 105760 (2020).

    Article  CAS  Google Scholar 

  56. S. Song, J. Liu, C. Zhou, Q. Jia, H. Luo, L. Deng, and X. Wang, Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. J. Alloys Compd. 843, 155713 (2020).

    Article  CAS  Google Scholar 

  57. C. Chen, X. Fang, L. Pan, S. Yin, T. Qiu, and J. Yang, Anisotropic microstructure and properties of GNSs/MgO microwave-attenuating composite ceramics. Ceram. Int. 45, 17905 (2019).

    Article  CAS  Google Scholar 

  58. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, W.B. Wang, K.H. Su, and Q.Y. Zhang, Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloy. Compd. 693, 432 (2017).

    Article  CAS  Google Scholar 

  59. M. Li, X. Cao, S. Zheng, and S. Qi, Ternary composites RGO/MoS2@Fe3O4: synthesis and enhanced electromagnetic wave absorbing performance. J. Mater. Sci. Mater. Electron. 28, 16802 (2017).

    Article  CAS  Google Scholar 

  60. C. Li, L. Deng, S. Peng, L. Qiu, Q. Wu, and S. Huang, Dielectric loss and microwave absorbing properties of the prepared MgCu2Nb2O8 composite ceramics. J. Mater. Sci. Mater. Electron. 35, 305 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21902186 and 21905305), Natural Science Foundation of Hunan Province, China(Grant No. 2023JJ50079), Hunan Provincial Natural Science Foundation of China (2023JJ40074), Hunan Provincial Department of Education outstanding youth project (21B0757), and the Hunan Provincial Innovation Foundation For Postgraduate (Grant No. QL20210045). This work was supported in part by the High Performance Computing Center of Central South University

Author information

Authors and Affiliations

Authors

Contributions

Chen Li: methodology, formal analysis, data curation, writing original draft. Lianwen Deng: conceptualization, supervision, funding acquisition; Huasheng Liang: writing–review & editing. Sen Peng: formal analysis. Shengxiang Huang: supervision, methodology. Leilei Qiu: conceptualization, writing–review & editing.

Corresponding author

Correspondence to Shengxiang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 356 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Deng, L., Liang, H. et al. Fe3O4-CuO-MgNb2O6 Ternary Ceramics with Heterogeneous Interfaces for Efficient Microwave Absorption. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11106-9

Keywords

Navigation