Skip to main content
Log in

Silicon Ion Implant Activation in β-(Al0.2Ga0.8)2O3

  • Topical Collection: 65th Electronic Materials Conference 2023
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As gallium oxide-based heterojunction devices gain prominence, low-resistance contacts to aluminum gallium oxide material are of increasing importance for high performance and access to modulation doped layers. Here, the activation of ion-implanted silicon donors is investigated as a function of donor density from 5 × 1018 cm−3 to 1 × 1020 cm−3, activation anneal duration from 6 s to 600 s, and activation temperature from 900°C to 1140°C. Importantly, ohmic behavior was achievable across a reasonably wide process window at moderate to high doping concentrations. Specific contact resistance of 1 × 10−3 Ω cm2 and sheet resistance of 2.8 kΩ/□ were achieved for a 60 nm-deep 1 × 1020 cm−3 box implant after activation at 1000°C for 6 s with standard Ti/Au contacts. Under these conditions, an activation efficiency of 7% was observed with Hall mobility of ~32 cm2/Vs. Furthermore, we demonstrate a Schottky diode formed of implanted material with a rectification ratio > 106 and further confirm the Hall carrier density results using capacitance–voltage profiling analysis. Finally, we show the significant impact of anneal duration and the potential for deleterious over-annealing which reduces the active carrier density, mobility, and resultant material conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data for this work are available upon reasonable request to the corresponding author.

References

  1. S.J. Pearton, J. Yang, P.H. Cary IV., F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018). https://doi.org/10.1063/1.5006941.

    Article  CAS  Google Scholar 

  2. J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang, and M.J. Tadjer, A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3. Appl. Phys. Rev. 9(1), 011315 (2022). https://doi.org/10.1063/5.0078037.

    Article  CAS  Google Scholar 

  3. Y. Qin, Z. Wang, K. Sasaki, J. Ye, and Y. Zhang, Recent progress of Ga2O3 power technology: large-area devices, packaging and applications. Jpn. J. Appl. Phys. 62, 0801 (2023). https://doi.org/10.35848/1347-4065/acb3d3.

    Article  Google Scholar 

  4. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 55, 1202A2 (2016). https://doi.org/10.7567/JJAP.55.1202A2.

    Article  CAS  Google Scholar 

  5. M. Higashiwaki, β-gallium oxide devices: progress and outlook. Phys. Status Solidi Rapid Res. Lett. 15, 2100357 (2021). https://doi.org/10.1002/pssr.202100357.

    Article  CAS  Google Scholar 

  6. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. Tu Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl. Phys. Express 8, 015503 (2015). https://doi.org/10.7567/APEX.8.015503.

    Article  CAS  Google Scholar 

  7. S. Rafique, L. Han, M.J. Tadjer, J.A. Freitas, N.A. Mahadik, and H. Zhao, Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl. Phys. Lett. 108(18), 182105 (2016). https://doi.org/10.1063/1.4948944.

    Article  CAS  Google Scholar 

  8. K. Sasaki, A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura, and S. Yamakoshi, Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl. Phys. Express 5(3), 035502 (2012). https://doi.org/10.1143/APEX.5.035502.

    Article  CAS  Google Scholar 

  9. M.J. Tadjer, F. Alema, A. Osinsky, M.A. Mastro, N. Nepal, J.M. Woodward, R.L. Myers-Ward, E.R. Glaser, J.A. Freitas, A.G. Jacobs, J.C. Gallagher, A.L. Mock, D.J. Pennachio, J. Hajzus, M. Ebrish, T.J. Anderson, K.D. Hobart, J.K. Hite, and C.R. Eddy, Characterization of β-Ga2O3 homoepitaxial films and MOSFETs grown by MOCVD at high growth rates. J. Phys. D Appl. Phys. 54(3), 034005 (2021). https://doi.org/10.1088/1361-6463/abbc96.

    Article  CAS  Google Scholar 

  10. S. Roy, A. Bhattacharyya, C. Peterson, and S. Krishnamoorthy, 2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate. Appl. Phys. Lett. 122(15), 152101 (2023). https://doi.org/10.1063/5.0137935.

    Article  CAS  Google Scholar 

  11. P. Dong, J. Zhang, Q. Yan, Z. Liu, P. Ma, H. Zhou, and Y. Hao, 6 kV/3.4 mΩ cm2 Vertical β-Ga2O3 Schottky barrier diode with BV2/Ron, sp performance exceeding 1-D unipolar limit of GaN and SiC. IEEE Electron Device Lett. 43(5), 765 (2022). https://doi.org/10.1109/LED.2022.3160366.

    Article  CAS  Google Scholar 

  12. H.-H. Wan, J.-S. Li, C.-C. Chiang, X. Xia, F. Ren, H.N. Masten, J.S. Lundh, J.A. Spencer, F. Alema, A. Osinsky, A.G. Jacobs, K. Hobart, M.J. Tadjer, and S.J. Pearton, Operation of NiO/β-(Al0.21Ga0.79)2O3/Ga2O3 heterojunction lateral rectifiers at up to 225°C. ECS J. Solid State Sci. Technol. 12(7), 075008 (2023). https://doi.org/10.1149/2162-8777/ace6d6.

    Article  Google Scholar 

  13. Y. Qin, M. Xiao, M. Porter, Y. Ma, J. Spencer, Z. Du, A.G. Jacobs, K. Sasaki, H. Wang, M. Tadjer, and Y. Zhang, 10-kV Ga2O3 charge-balance Schottky rectifier operational at 200°C. IEEE Electron Device Lett. 44(8), 1268 (2023). https://doi.org/10.1109/LED.2023.3287887.

    Article  CAS  Google Scholar 

  14. J.S. Lundh, H.N. Masten, K. Sasaki, A.G. Jacobs, Z.Cheng, J. Spencer, L. Chen, J. Gallagher, A.D. Koehler, K. Konishi, S. Graham, A. Kuramata, K.D. Hobart, and M.J. Tadjer, AlN-capped β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors for near-junction thermal management of next generation power devices. Device Research Conference–Conference DIG DRC, vol. 2022 (2022), p. 1–2. https://doi.org/10.1109/DRC55272.2022.9855809

  15. H.-H. Wan, J.-S. Li, C.-C. Chiang, X. Xia, F. Ren, H.N. Masten, J.S. Lundh, J.A. Spencer, F. Alema, A. Osinsky, A.G. Jacobs, K. Hobart, M.J. Tadjer, and S.J. Pearton, NiO/b-(AlxGa1x)2O3/Ga2O3 heterojunction lateral rectifiers with reverse breakdown voltage > 7 kV. ECS Trans. 111(2), 85 (2023). https://doi.org/10.1149/11102.0085ecst.

    Article  Google Scholar 

  16. E. Chikoidze, A. Fellous, A. Perez-Tomas, G. Sauthier, T. Tchelidze, C. Ton-That, T.T. Huynh, M. Phillips, S. Russell, M. Jennings, B. Berini, F. Jomard, and Y. Dumont, P-type β-gallium oxide: a new perspective for power and optoelectronic devices. Mater. Today Phys. 3, 118 (2017). https://doi.org/10.1016/j.mtphys.2017.10.002.

    Article  Google Scholar 

  17. M.H. Wong, C.H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl. Phys. Lett. 113(10), 102103 (2018). https://doi.org/10.1063/1.5050040.

    Article  CAS  Google Scholar 

  18. K. Kaneko, and S. Fujita, Novel p-type oxides with corundum structure for gallium oxide electronics. J. Mater. Res. 37(3), 651 (2022). https://doi.org/10.1557/s43578-021-00439-4.

    Article  CAS  Google Scholar 

  19. M.J. Tadjer, K. Sasaki, D. Wakimoto, T.J. Anderson, M.A. Mastro, J.C. Gallagher, A.G. Jacobs, A.L. Mock, A.D. Koehler, M. Ebrish, K.D. Hobart, and A. Kuramata, Delta-doped β-(AlxGa1x)2O3/Ga2O3 heterostructure field-effect transistors by ozone molecular beam epitaxy. J. Vac. Sci. Technol. A Vac. Surf. Film 39(3), 033402 (2021). https://doi.org/10.1116/6.0000932.

    Article  CAS  Google Scholar 

  20. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100(1), 013504 (2012). https://doi.org/10.1063/1.3674287.

    Article  CAS  Google Scholar 

  21. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, Si-Ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts. Appl. Phys. Express 6(8), 086502 (2013). https://doi.org/10.7567/APEX.6.086502.

    Article  CAS  Google Scholar 

  22. J.A. Spencer, M.J. Tadjer, A.G. Jacobs, M.A. Mastro, J.L. Lyons, J.A. Freitas, J.C. Gallagher, Q.T. Thieu, K. Sasaki, A. Kuramata, Y. Zhang, T.J. Anderson, and K.D. Hobart, Activation of implanted Si, Ge, and Sn donors in high-resistivity halide vapor phase epitaxial β-Ga2O3: N with high mobility. Appl. Phys. Lett. 121(19), 192102 (2022). https://doi.org/10.1063/5.0120494.

    Article  CAS  Google Scholar 

  23. M.J. Tadjer, C. Fares, N.A. Mahadik, J.A. Freitas, D. Smith, R. Sharma, M.E. Law, F. Ren, S.J. Pearton, and A. Kuramata, Damage Recovery and dopant diffusion in Si and Sn ion implanted β-Ga2O3. ECS J. Solid State Sci. Technol. 8(7), Q3133 (2019). https://doi.org/10.1149/2.0271907jss.

    Article  CAS  Google Scholar 

  24. K.R. Gann, N. Pieczulewski, C.A. Gorsak, K. Heinselman, T.J. Asel, B.A. Noesges, K.T. Smith, D.M. Dryden, H.G. Xing, H.P. Nair, D.A. Muller, and M.O. Thompson, Silicon implantation and annealing in β-Ga2O3: role of ambient, temperature, and time. J. Appl. Phys. 135(1), 015302 (2024). https://doi.org/10.1063/5.0184946.

    Article  CAS  Google Scholar 

  25. Z. Kabilova, C. Kurdak, and R.L. Peterson, Observation of impurity band conduction and variable range hopping in heavily doped (010) β-Ga2O3. Semicond. Sci. Technol. 34(3), 03LT02 (2019). https://doi.org/10.1088/1361-6641/ab0150.

    Article  CAS  Google Scholar 

  26. P.P. Edwards and M.J. Sienko, Universality aspects of the metal-nonmetal transition in condensed media. Phys. Rev. B 17(6), 2575 (1978). https://doi.org/10.1103/PhysRevB.17.2575.

    Article  CAS  Google Scholar 

  27. Y. Wang, X. Zhang, H. Luan, H. Yang, S. Wang, Q. Dai, Z. Wu, and Y. Cui, Effects of Si-doping on structural and electrical characteristics of polar, semi-polar, and non-polar AlGaN epi-layers. Mater. Sci. Semicond. Process. 42, 344 (2016). https://doi.org/10.1016/j.mssp.2015.11.003.

    Article  CAS  Google Scholar 

Download references

Funding

U.S. Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Jacobs.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1719 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, A.G., Spencer, J.A., Tadjer, M.J. et al. Silicon Ion Implant Activation in β-(Al0.2Ga0.8)2O3. J. Electron. Mater. 53, 2811–2816 (2024). https://doi.org/10.1007/s11664-024-11075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11075-z

Keywords

Navigation