Skip to main content
Log in

Study of Magnesium Ferrite/Polystyrene Composites for Microwave Absorption Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-performance microwave-absorbing composites have attracted considerable attention in the field of electronic technology and telecommunications. These materials utilize stoichiometric combinations of components to enhance the magnetic parameters and reduce dielectric losses. In this work, microwave emulsion was used to synthesize magnetic nanocomposites with different concentrations of MgFe2O4 nanoparticles in polystyrene (PST). Samples of pure ferrite and PST were mixed in various amounts to form a ferrite polymer (FP-1, FP-2, FP-3, and FP-4, with 25%, 50%, 75%, and 100% ferrite, respectively). These composites were characterized using x-ray diffraction (XRD), dielectric characteristics, and vibrating-sample magnetometry (VSM). The XRD results showed that MgFe2O4 particles were evenly dispersed throughout single-phase PST. The crystallite size increased from 2 nm to 44 nm by mixing ferrites in PST. The dielectric properties were reduced as the percentage was decreased. The VSM tests indicated that all nanocomposites showed narrow loops and ferromagnetic behavior. The magnetic parameters decreased by adding the PST in magnesium ferrite components. The saturation magnetization decreased from 70 emu/g to 18 emu/g, remanence magnetization decreased from 21 emu/g to 5 emu/g, and coercivity decreased from 38 Oe to 8 Oe. All the above parameter results suggest that due to the high dielectric loss at high frequencies, magnesium spinel ferrites may be suitable for microwave absorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, and S.S. Suryavanshi, Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg-Zn Ferrites. J. Magn. Magn. Mater. 407, 60 (2016).

    Article  CAS  Google Scholar 

  2. M.L. Singla, S. Awasthi, A. Srivastava, and D.V.S. Jain, Effect of doping of organic and inorganic acids on polyaniline/Mn3O4 composite for NTC and conductivity behaviour. Sens. Actuators A Phys. 136(2), 604 (2007).

    Article  CAS  Google Scholar 

  3. D. Guo, Z. Zhang, M. Lin, X. Fan, G. Chai, Y. Xu, and D. Xue, Ni-Zn ferrite films with high resonance frequency in the gigahertz range deposited by magnetron sputtering at room temperature. J. Phys. D Appl. Phys. 42(12), 125006 (2009).

    Article  Google Scholar 

  4. M. Niaz Akhtar, M. Azhar Khan, M. Ahmad, G. Murtaza, R. Raza, S.F. Shaukat, M.H. Asif, N. Nasir, G. Abbas, M.S. Nazir, and M.R. Raza, Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393 (2014).

    Article  CAS  Google Scholar 

  5. A.A. Farghali, M. Moussa, and M.H. Khedr, Synthesis and characterization of novel conductive and magnetic nano-composites. J. Alloys Compd. 499(1), 98 (2010).

    Article  CAS  Google Scholar 

  6. J. Xie, S. Lee, and X. Chen, Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62(11), 1064 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. Qiao, and X. Shi, Dendrimer-based molecular imaging contrast agents. Prog. Polym. Sci. 44, 1 (2015).

    Article  CAS  Google Scholar 

  8. J.H. Almaki, R. Nasiri, A. Idris, F.A.A. Majid, M. Salouti, T.S. Wong, S. Dabagh, M. Marvibaigi, and N. Amini, Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells. Nanotechnology 27(10), 105601 (2016).

    Article  PubMed  Google Scholar 

  9. S. Mngadi, S. Mokhosi, M. Singh, and W. Mdlalose, Chitosan-functionalized Mg0.5Co0.5Fe2O4 magnetic nanoparticles enhance delivery of 5-fluorouracil in vitro. Coatings 10(5), 446 (2020).

    Article  CAS  Google Scholar 

  10. W. Li, H. Liu, J. Zhu, X. Zhang, G. Li, Y. Li, and H. Li, Efficient photocathodic protection of nanoflower MgIn2S4-modified CNNs composites on 316 SS under visible light. Mater. Res. Bull. 173, 112694 (2024).

    Article  CAS  Google Scholar 

  11. Z. Song, D. Han, M. Yang, J. Huang, X. Shao, and H. Li, formic acid formation via direct hydration reaction (CO + H2O → HCOOH) on magnesia-silver composite. Appl. Surf. Sci. 607, 155067 (2023).

    Article  CAS  Google Scholar 

  12. J. Zhang, X. Wang, L. Zhou, G. Liu, D.T. Adroja, I. da Silva, F. Demmel, D. Khalyavin, J. Sannigrahi, H.S. Nair, L. Duan, J. Zhao, Z. Deng, R. Yu, X. Shen, R. Yu, H. Zhao, J. Zhao, Y. Long, Z. Hu, H.J. Lin, T.S. Chan, C.T. Chen, W. Wu, and C. Jin, A ferrotoroidic candidate with well-separated spin chains. Adv. Mater. 34(12), 2106728 (2022).

    Article  CAS  Google Scholar 

  13. X. Li, J. Wei, K.E. Aifantis, Y. Fan, Q. Feng, F.Z. Cui, and F. Watari, Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. Part A 104(5), 1285 (2016).

    Article  CAS  Google Scholar 

  14. I. Sharifi, H. Shokrollahi, and S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324(6), 903 (2012).

    Article  CAS  Google Scholar 

  15. Q. Abbas, G. Murtaza, N. Muhammad, M. Ishfaq, H.M.T. Iqbal, A. Asad, G.A. Ashraf, and M.Z. Iqbal, Structural, dielectric and magnetic properties of (ZnFe2O4/polystyrene) nanocomposites synthesized by micro-emuslion technique. Ceram. Int. 46(5), 5920 (2020).

    Article  CAS  Google Scholar 

  16. H. Zhao, X. Sun, C. Mao, and J. Du, Preparation and microwave-absorbing properties of NiFe2O4-polystyrene composites. Phys. B Condens. Matter 404(1), 69 (2009).

    Article  CAS  Google Scholar 

  17. S. Bhadra, D. Khastgir, N.K. Singha, and J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34(8), 783 (2009).

    Article  CAS  Google Scholar 

  18. W. Li, C. Le, L. Qiao, J. Zhen, Y. Ying, L. Yu, L. Jiang, and S. Che, Electromagnetic interference shielding effectiveness and microwave absorption of ferrite-polymer composite using Ni0.32Cu0.08Zn0.6Fe2O4 ferrite,” 2016 Progress in Electromagnetic Research Symposium PIERS 2016 - Proc., pp. 647–653 (2016).

  19. S.N. Patil, A.M. Pawar, S.K. Tilekar, and B.P. Ladgaonkar, Investigation of magnesium substituted nano particle zinc ferrites for relative humidity sensors. Sens. Actuators A Phys. 244, 35 (2016).

    Article  CAS  Google Scholar 

  20. S.S. Nair, M. Mathews, P.A. Joy, S.D. Kulkarni, and M.R. Anantharaman, Effect of cobalt doping on the magnetic properties of superparamagnetic γ-Fe2O3-polystyrene nanocomposites. J. Magn. Magn. Mater. 283(2–3), 344 (2004).

    Article  CAS  Google Scholar 

  21. M. Ajmal, and M.U. Islam, Structural, optical and dielectric properties of polyaniline-Ni0.5Zn0.5Fe2O4 nano-composites. Phys. B Condens. Matter 521, 355 (2017).

    Article  CAS  Google Scholar 

  22. L. Li, J. Jiang, and F. Xu, Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite-polyaniline nanocomposite. Mater. Lett. 61(4–5), 1091 (2007).

    Article  CAS  Google Scholar 

  23. C.J. Li, B. Wang, and J.N. Wang, Magnetic and microwave absorbing properties of electrospun Ba(1x)LaxFe12O19 nanofibers. J. Magn. Magn. Mater. 324(7), 1305 (2012).

    Article  CAS  Google Scholar 

  24. K. Naz, J.K. Khan, M. Khalid, M.S. Akhtar, Z.A. Gilani, H.M. Noor ul Huda Khan Asghar, G.A.M. Mersal, M.M. Ibrahim, A. Muhammad, and M.G.B. Ashiq, Structural, dielectric, impedance and electric modulus analysis of Ni substituted copper spinel ferrites nanoparticles for microwave device applications. Mater. Chem. Phys. 285, 126091 (2022).

    Article  CAS  Google Scholar 

  25. X. Zhang, S. Guo, Y. Qin, and C. Li, Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chem. Res. Chinese Univ. 37(3), 379 (2021).

    Article  CAS  Google Scholar 

  26. Y. Yang, Z. Zhang, Y. Zhou, C. Wang, and H. Zhu, Design of a simultaneous information and power transfer system based on a modulating feature of magnetron. IEEE Trans. Microw. Theory Tech. 71(2), 907 (2023).

    Article  Google Scholar 

  27. A. Munir, F. Ahmed, M. Saqib, and M. Anis-ur-Rehman, Partial correlation of electrical and magnetic properties of Nd substituted Ni-Zn nanoferrites. J. Magn. Magn. Mater. 397, 188 (2016).

    Article  CAS  Google Scholar 

  28. R. Qindeel, and N.H. Alonizan, Improved structural and magnetic properties of polypyrrole substituted spinel ferrites composites. Mater. Sci. Eng. B 244, 43 (2019).

    Article  CAS  Google Scholar 

  29. B. Yang, H. Wang, M. Zhang, F.F. Jia, Y. Liu, and Z. Lu, Mechanically strong, flexible, and flame-retardant Ti3C2Tx MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem. Eng. J. 476, 146834 (2023).

    Article  CAS  Google Scholar 

  30. M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, and A.M. Shaikh, Dielectric properties of Cu substituted Ni0.5xZn0.3Mg0.2Fe2O4 ferrites. J. Alloys Compd. 509(6), L113 (2011).

    Article  CAS  Google Scholar 

  31. M. Kooti, A.N. Sedeh, K. Gheisari, and A. Figuerola, Synthesis, characterization, and performance of nanocomposites containing reduced graphene oxide, polyaniline, and cobalt ferrite. Phys. B Condens. Matter 612, 412974 (2021).

    Article  CAS  Google Scholar 

  32. M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, M. Hussain, S.A. Khan, and I. Ali, Synthesis, electrical and magnetic properties of Pr-substituted Mn ferrites for high-frequency applications. J. Electron. Mater. 46(3), 1826 (2017).

    Article  CAS  Google Scholar 

  33. K.Y. Butt, S. Aman, A.A. AlObaid, T.I. Al-Muhimeed, A. Rehman, H.H. Hegazy, N. Ahmad, A.R. Khan, S.R. Ejaz, and H.M.T. Farid, The study of structural, magnetic and dielectric properties of spinel ferrites for microwave absorption applications. Appl. Phys. A Mater. Sci. Process. 127(9), 1 (2021).

    Article  Google Scholar 

  34. N. Gao, J. Liu, J. Deng, D. Chen, Q. Huang, and G. Pan, Design and performance of ultra-broadband composite meta-absorber in the 200 Hz-20 kHz range. J. Sound Vib. 574, 118229 (2024).

    Article  Google Scholar 

  35. M. Kim, C. Lee, and J. Jang, Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv. Funct. Mater. 24(17), 2489 (2014).

    Article  CAS  Google Scholar 

  36. S. Anjum, M. Anjum, and Z. Mustafa, Investigation of magnetic and dielectric properties of Agx-substituted Co0.05xZn0.95O dilute magnetic semiconductor prepared by co-precipitation method. Appl. Phys. A Mater. Sci. Process. 126(9), 1 (2020).

    Article  Google Scholar 

  37. U.B. Shinde, S.E. Shirsath, S.M. Patange, S.P. Jadhav, K.M. Jadhav, and V.L. Patil, Preparation and characterization of Co2+ Substituted Li-Dy ferrite ceramics. Ceram. Int. 39(5), 5227 (2013).

    Article  CAS  Google Scholar 

  38. M. Ishaque, M.U. Islam, M. Azhar Khan, I.Z. Rahman, A. Genson, and S. Hampshire, Structural, electrical and dielectric properties of yttrium substituted nickel ferrites. Phys. B Condens. Matter 405(6), 1532 (2010).

    Article  CAS  Google Scholar 

  39. G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy, and B.S. Boyanov, Dielectric properties of polycrystalline mixed nickel-zinc ferrites. Mater. Lett. 40(1), 39 (1999).

    Article  CAS  Google Scholar 

  40. J. Lyu, L. Huang, L. Chen, L. Chen, Y. Zhu, Y. Zhu, and S. Zhuang, Review on the terahertz metasensor: from featureless refractive index sensing to molecular identification. Photon. Res. 12(2), 194 (2024).

    Article  Google Scholar 

  41. H.M. Tahir Farid, I. Ahmad, I. Ali, A. Mahmood, and S.M. Ramay, Structural and dielectric properties of copper-based spinel ferrites. Eur. Phys. J. Plus 133(2), 1 (2018).

    Article  CAS  Google Scholar 

  42. D. Bouokkeze, J. Massoudi, W. Hzez, M. Smari, A. Bougoffa, K. Khirouni, E. Dhahri, and L. Bessais, Investigation of the structural, optical, elastic and electrical properties of spinel LiZn2Fe3O8 nanoparticles annealed at two distinct temperatures. RSC Adv. 9(70), 40940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. B. Aziz, A. Shakoor, A.K. Qureshi, K. Ali, N.A. Niaz, M.T. Farid, and I. Ali, Structural, electrical, and magnetic properties of ferrite-polymer composites. J. Electron. Mater. 47(11), 6437 (2018).

    Article  CAS  Google Scholar 

  44. M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, and Y.M. Al Angari, Polyaniline/Co0.6Zn0.4Fe2O4 core-shell nano-composites. synthesis, characterization and properties. J. Alloys Compd. 747, 83 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R132), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. A.M.A. Henaish thanks the the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to this work.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, M.M., Ali, M., Syed, I. et al. Study of Magnesium Ferrite/Polystyrene Composites for Microwave Absorption Applications. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11058-0

Keywords

Navigation