Skip to main content
Log in

Flexible Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Derived from Polyimide/Graphene

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon is a major class of high-performance electrode materials for the electrochemical supercapacitor. Herein, nitrogen-doped carbon was obtained by pyrolysis to graphene-grafted polyimide precursors on carbon cloth through in situ polymerization. The morphology, structure, and electrochemical properties of flexible electrodes were investigated in detail. Scanning electron microscopy (SEM) confirmed the preparation of nitrogen-doped carbon on carbon cloth. X-ray photoelectron spectroscopy (XPS) characterization showed the doping of the N heteroatom. Flexible electrodes obtained with the optimized mass graphene delivered high specific capacitance of 669 F g−1 at 0.5 A g−1 and good cycle stability, with retention of 122.3% capacitance after 6000 cycles in a three-electrode system. These typical flexible electrodes show great potential in wearable energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Ye, H.C. Zhang, Y. Shi, Y.J. Liu, H.M. Li, Z.Y. Wang, M. Yang, and B. Liu, A N/S co-doped free-standing carbon electrode derived from waste facial masks for anti-freezing flexible quasi-solid-state supercapacitors. Chem. Commun. 59, 6925 (2023).

    Article  CAS  Google Scholar 

  2. H.Y. Wei, T.C. Sun, M.Y. Liu, Q.Y. Pang, Y.T. Qian, X.W. Dou, Y.W. Zhang, Q. Ju, and Z.L. Fang, In situ insertion of shutter ions in MnO2 to boost the supercapacitive performance of flexible supercapacitors. J. Mater. Chem. A 11(30), 16303 (2023).

    Article  CAS  Google Scholar 

  3. X.Y. Tao, S.F. Ye, K.H. Zhu, L.Y. Dou, P.X. Cui, J. Ma, C. Zhao, X.Y. Wei, L.T. Guo, A. Hojjati-Najafabadi, and P.Z. Feng, ATMP doped conductive PANI/CNTs composite hydrogel electrodes toward high energy density flexible supercapacitors. ACS Appl. Energy Mater. 6, 8177 (2023).

    Article  CAS  Google Scholar 

  4. J.H. Park, H.H. Rana, J.S. Kim, J.W. Hong, S.J. Lee, and H.S. Park, Inorganic-organic double network ionogels based on silica nanoparticles for high-temperature flexible supercapacitors. ACS Appl. Mater. Interface 15, 37344 (2023).

    Article  CAS  Google Scholar 

  5. R. Manikandan, C.J. Raj, N. Goli, J.M. Oh, B.C. Kim, S. Periyasamy, and J.W. Lee, Interconnected vanadyl pyrophosphate nanonetworks as a flexible electrode for high-voltage and long-life Li-ion supercapacitors. ACS Appl. Mater. Interface 15, 25452 (2023).

    Article  CAS  Google Scholar 

  6. J. Yu, T. Zhang, L. Xu, and P. Huang, Synthesis and characterization of aramid fiber-reinforced polyimide/carbon black composites and their use in a supercapacitor. Chinese J. Chem. 35(10), 1586 (2017).

    Article  CAS  Google Scholar 

  7. Y. Yesi, I. Shown, A. Ganguly, T.T. Ngo, L.C. Chen, and K.H. Chen, Directly-grown hierarchical carbon nnanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. Chemsuschem 9, 370 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. C. Choi, J.A. Lee, A.Y. Choi, Y.T. Kim, X. Lepro, M.D. Lima, R.H. Baughman, and S.J. Kim, Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 26(13), 2059 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen, and S. Xie, Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 26(28), 4855 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. X. Wang, J. Peng, Y. Zhang, M. Li, E. Saiz, A.P. Tomsia, and Q. Cheng, Ultratough bioinspired graphene fiber via sequential toughening of hydrogen and ionic bonding. ACS Nano 12, 12638 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. C. Zhou, T. Gao, Y. Wang, Q. Liu, Z. Huang, X. Liu, M. Qing, and D. Xiao, Synthesis of P-doped and NiCo-hybridized graphene-based fibers for flexible asymmetrical solid-state micro-energy storage device. Small 15(1), e1803469 (2019).

    Article  PubMed  Google Scholar 

  12. L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li, and C. Gao, Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017).

    Article  Google Scholar 

  13. R.K.L. Tan, S.P. Reeves, N. Hashemi, D.G. Thomas, E. Kavak, R. Montazami, and N.N. Hashemi, Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A 5(34), 17777 (2017).

    Article  CAS  Google Scholar 

  14. J. Ren, R.P. Ren, and Y.K. Lv, A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem. Eng. J. 353, 419 (2018).

    Article  CAS  Google Scholar 

  15. X. Du, H.Y. Liu, and Y.W. Mai, Ultrafast synthesis of multifunctional N-doped graphene foam in an ethanol flame. ACS Nano 10(1), 453 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Yang, Y.X. Liu, Y. Li, B.W. Deng, B. Yin, and M.B. Yang, Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. J. Mater. Chem. A 8, 17257 (2020).

    Article  CAS  Google Scholar 

  17. J.D. Orlando, R.M.A.P. Lima, L. Li, S.A. Sydlik, and H.P. de Oliveira, Electrochemical performance of N-doped carbon-based electrodes for supercapacitors. ACS Appl. Electron. Mater. 4, 5040 (2022).

    Article  CAS  Google Scholar 

  18. D. Qu, X. You, X. Feng, J. Wu, D. Liu, D. Zheng, Z.Z. Xie, D. Qu, J. Li, and H. Tang, Lithium ion supercapacitor composed by Si-based anode and hierarchal porous carbon cathode with super long cycle life. Appl. Surf. Sci. 463, 879 (2019).

    Article  CAS  Google Scholar 

  19. J.W. Gu, H.F. Wang, S. Li, M.S. Riaz, J.Q. Ning, X. Pu, and Y. Hu, Tuning pyridinic-N and graphitic-N doping with 4, 4′-bipyridine in honeycomb-like porous carbon and distinct electrochemical roles in aqueous and ionic liquid gel electrolytes for symmetric supercapacitors. J. Colloid Interf. Sci. 635, 254 (2023).

    Article  CAS  Google Scholar 

  20. L. Hao, X. Li, and L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25(28), 3899 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. W. Shen, and W. Fan, Nitrogen-containing porous carbons: synthesis and application. J. Mater. Chem. A 1(4), 999 (2013).

    Article  CAS  Google Scholar 

  22. Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao, and R. O’Hayre, Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3(10), 1437 (2010).

    Article  CAS  Google Scholar 

  23. D.C. Guo, J. Mi, G.P. Hao, W. Dong, G. Xiong, W.C. Li, and A.H. Lu, Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ. Sci. 6(2), 652 (2013).

    Article  CAS  Google Scholar 

  24. J. Zhou, T. Zhu, W. Xing, Z. Li, H. Shen, and S. Zhuo, Activated polyaniline-based carbon nanoparticles for high performance supercapacitors. Electrochim. Acta 160, 152 (2015).

    Article  CAS  Google Scholar 

  25. L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, and G. Yushin, Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 22(4), 827 (2012).

    Article  CAS  Google Scholar 

  26. W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, and J.W. Choi, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12(5), 2283 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. K.T. Cho, S.B. Lee, and J.W. Lee, Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons. J. Phys. Chem. C 118(18), 9357 (2014).

    Article  CAS  Google Scholar 

  28. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu, Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 19(11), 1800 (2009).

    Article  CAS  Google Scholar 

  29. Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y. Tang, J. Jiang, D. Wu, and X. Feng, Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28(10), 1981 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. M. Inagaki, N. Ohta, and Y. Hishiyama, Aromatic polyimides as carbon precursors. Carbon 61, 1 (2013).

    Article  CAS  Google Scholar 

  31. C. Huang, R. Doong, D. Gu, and D. Zhao, Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon 49(9), 3055 (2011).

    Article  CAS  Google Scholar 

  32. Q. Zhao, D. Yang, C. Zhang, X. Liu, X. Fan, A.K. Whittaker, and X.S. Zhao, Tailored polyimide-graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl. Mater. Interface 10, 43730 (2018).

    Article  CAS  Google Scholar 

  33. Y. Niu, Q. Fang, X. Zhang, J. Zhao, and Y. Li, Structural evolution, induced effects and graphitization mechanism of reduced graphene oxide sheets/polyimide composites. Compos. Part B Eng. 134, 127 (2018).

    Article  CAS  Google Scholar 

  34. D.K. Kim, N.D. Kim, S.K. Park, K.D. Seong, M. Hwang, N.H. You, and Y.Z. Piao, Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors. J. Power Sources 380, 55 (2018).

    Article  CAS  Google Scholar 

  35. J. Yu, C.C. Ding, X.D. Wang, and P. Huang, Optimized synthesis of N-doped multi-channel carbon derived from fiber-reinforced polyimide composites for supercapacitors. Mater. Lett. 339, 134036 (2023).

    Article  CAS  Google Scholar 

  36. W.S. Hummers, and R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958).

    Article  CAS  Google Scholar 

  37. X. Wang, T.M. Wang, C. Yang, H.D. Li, and P. Liu, Well-defined flake-like polypyrrole grafted graphene nanosheets composites as electrode materials for supercapacitors with enhanced cycling stability. Appl. Surf. Sci. 287, 242 (2013).

    Article  CAS  Google Scholar 

  38. Q.F. Liu, J.H. Qiu, C. Yang, L.M. Zang, G.H. Zhang, and E. Sakai, High-performance PVA/PEDOT:PSS hydrogel electrode for all-gel-state flexible supercapacitors. Adv. Mater. Technol. 6, 2000919 (2021).

    Article  CAS  Google Scholar 

  39. L.J. Xie, G.H. Sun, F.Y. Su, X.Q. Guo, Q.Q. Kong, X.M. Li, X.H. Huang, L. Wan, W. Song, K.X. Li, C.X. Lv, and C.M. Chen, Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4(5), 1637 (2016).

    Article  CAS  Google Scholar 

  40. X.Q. Yang, D.C. Wu, X.M. Chen, and R.W. Fu, Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J. Phys. Chem. C 114, 8581 (2010).

    Article  CAS  Google Scholar 

  41. L. Wan, J. Wang, L. Xie, Y. Sun, and K. Li, Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 15583 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. X.Y. Chen, H.Y. Mi, C.C. Ji, C.C. Lei, Z.Z. Fan, C. Yu, and L.Y. Sun, Hierarchically porous carbon microfibers for solid-state supercapacitors. J. Mater. Sci. 55, 5510 (2020).

    Article  CAS  Google Scholar 

  43. J.M. Smolsky, and A.V. Krasnoslobodtsev, Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering. Nano Res. 11(12), 6346 (2018).

    Article  CAS  Google Scholar 

  44. Y.Z.N. Htwe, W.S. Chow, Y. Suda, A.A. Thant, and M. Mariatti, Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Appl. Surf. Sci. 469, 951 (2019).

    Article  CAS  Google Scholar 

  45. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, and B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Q.F. Liu, L.M. Zang, X. Qiao, J.H. Qiu, X. Wang, L. Hu, J. Yang, and C. Yang, Compressible all-in-one supercapacitor with adjustable output voltage based on polypyrrole-coated melamine foam. Adv. Electron. Mater. 5, 1900724 (2019).

    Article  CAS  Google Scholar 

  47. B. Mandal, S. Sah, D. Das, J. Panda, S. Das, R. Sarkar, and B. Tudu, Supercapacitor performance of nitrogen doped graphene synthesized via DMF assisted single-step solvothermal method. FlatChem 34, 100400 (2022).

    Article  CAS  Google Scholar 

  48. D. Gandla, X. Wu, F. Zhang, C. Wu, and D.Q. Tan, High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels. ACS Omega 6, 7615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. C. Ding, T. Liu, X. Yan, L. Huang, S. Ryu, J. Lan, Y. Yu, W.H. Zhong, and X. Yang, An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors. Nano-Micro. Lett. 12, 63 (2020).

    Article  Google Scholar 

  50. S. Park, B. Seo, D. Shin, K. Kim, and W. Choi, Sodium-chloride-assisted synthesis of nitrogen-doped porous carbon shells via one-step combustion waves for supercapacitor electrodes. Chem. Eng. J. 433, 134486 (2022).

    Article  CAS  Google Scholar 

  51. W.S. Tan, R.J. Fu, H. Ji, Y. Kong, Y.G. Xu, and Y. Qin, Preparation of nitrogen-doped carbon using graphene quantum dots-chitosan as the precursor and its supercapacitive behaviors. Int. J. Biol. Macromol. 112, 561 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. T.T. Lin, W.H. Lai, Q.F. Lv, and Y. Yu, Porous nitrogen-doped graphene/carbon nanotubes composite with an enhanced supercapacitor performance. Electrochim. Acta 178, 517 (2015).

    Article  CAS  Google Scholar 

  53. T.T. Lin, W.D. Wang, Q.F. Lv, H.B. Zhao, X.Q. Zhang, and Q.L. Lin, Graphene-wrapped nitrogen-containing carbon spheres for electrochemical supercapacitor application. J. Anal. Appl. Pyrol. 113, 545 (2015).

    Article  CAS  Google Scholar 

  54. Y. Li, J. Dong, J. Zhang, X. Zhao, P. Yu, L. Jin, and Q. Zhang, Nitrogen-doped carbon membrane derived from polyimide as free-standing electrodes for flexible supercapacitors. Small 11, 3476 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. T. Le, Y. Yang, Z. Huang, and F. Kang, Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance. J. Power. Sources 278, 683 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2020QE088).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and data collection were performed by YL, TL, and XW. Data analysis and interpretation were performed by TL and YL. The first draft of the manuscript was written by XW. Review and editing of the manuscript were performed by CY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xue Wang or Chao Yang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Li, T., Wang, X. et al. Flexible Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Derived from Polyimide/Graphene. J. Electron. Mater. 53, 3320–3328 (2024). https://doi.org/10.1007/s11664-024-11028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11028-6

Keywords

Navigation