Skip to main content
Log in

Detailed Investigation of Plasticized PMMA Dielectric for Improved Performance of Organic Field-Effect Transistors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, organic field-effect transistors (OFETs) were fabricated using plasticized poly(methyl methacrylate) (PMMA) as the gate dielectric and copper phthalocyanine (CuPc) as the active layer. Propylene carbonate (PC) was used as a plasticizer material. The dielectric properties of the plasticized PMMA were investigated in detail and the OFET parameters were examined. The effective capacitance (Ci) of plasticized PMMA was measured as ~ 500 nF cm−2 (at 100 Hz), which is almost 70 times higher than that of pure PMMA. This increase in effective capacitance led to significant improvements in various key parameters of the fabricated OFETs. High hole field-effect mobility values (0.81 cm2 V−1 s−1), low threshold voltages (~ ±0.1 V), and low operating voltages (0 to ±0.8 V) were achieved by using the plasticized PMMA dielectric. The temperature dependence of the fabricated OFETs was also investigated, and the activation energy of CuPc was estimated as 29.3 meV. The plasticized OFETs demonstrated excellent stability over 3600 measurement cycles carried out in an ambient atmosphere. This demonstrated stability of the fabricated OFETs reinforces the practical feasibility of this material combination strategy, positioning it as a key advancement in the field of solution-processable gate dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Liu, B. Ouyang, X. Guo, Y. Guo, and Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex Electron. 6, 1 (2022).

    Article  Google Scholar 

  2. C. Risko and J.L. Brédas, Organic semiconductors: healing contact. Nat. Mater. 12, 1084–1085 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, and K. Müllen, Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 24, 417–420 (2011).

    Article  PubMed  Google Scholar 

  4. A. Nawaz, L. Merces, L.M. Ferro, P. Sonar, and C.C. Bufon, Impact of planar and vertical organic field-effect transistors on flexible electronics. Adv. Matter. 35(11), 2204804 (2023).

    Article  CAS  Google Scholar 

  5. B.L. Hu, K. Zhang, C. An, W. Pisula, and M. Baumgarten, Thiadiazoloquinoxaline-fused naphthalenediimides for N-type organic field-effect transistors (OFETs). Org. Lett. 19(23), 6300–6303 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. T. Lei, Y. Cao, Y. Fan, C.J. Liu, S.C. Yuan, and J. Pei, High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers. J. Am. Chem. Soc. 133(16), 6099–6101 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Q. Wang, E.J. Juarez-Perez, S. Jiang, L. Qiu, L.K. Ono, T. Sasaki, X. Wang, Y. Shi, Y. Zheng, and Y. Qi, Spin-coated crystalline molecular monolayers for performance enhancement in organic field-effect transistors. J. Phys. Chem. Lett. 9(6), 1318–1323 (2018).

    Article  PubMed  Google Scholar 

  8. K. Kim, J. Bae, S.H. Noh, J. Jang, S.H. Kim, and C.E. Park, Direct writing and aligning of small-molecule organic semiconductor crystals via “dragging mode” electrohydrodynamic jet printing for flexible organic field-effect transistor arrays. J. Phys. Chem. Lett. 8(22), 5492–5500 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. X. Ren, Z. Lu, X. Zhang, S. Grigorian, W. Deng, and J. Jie, Low-voltage organic field-effect transistors: challenges, progress, and prospects. ACS Mater. Lett. 4(8), 1531–1546 (2022).

    Article  CAS  Google Scholar 

  10. P. Kumar, V.N. Mishra, and R. Prakash, Ultralow-voltage eco-friendly water-induced LiOx/AlOx bilayer dielectric-based OFET. IEEE Trans. Electron Devices 70, 4345–4350 (2023).

    Article  CAS  Google Scholar 

  11. G. Konwar, P. Saxena, V. Raghuwanshi, S. Rahi, and S.P. Tiwari, Multifunctional flexible organic transistors with a high-k/natural protein bilayer gate dielectric for circuit and sensing applications. ACS Appl. Electron. Mater. 4(5), 2525–2533 (2022).

    Article  CAS  Google Scholar 

  12. X. Wang, H. Wang, Y. Li, Z. Shi, D. Yan, and Z. Cui, Polymer/silicon nanoparticle hybrid layer as high-k dielectrics in organic thin-film transistors. J. Phys. Chem. C 122(21), 11214–11221 (2018).

    Article  CAS  Google Scholar 

  13. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Malsch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431(7011), 963–966 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. M.H. Yoon, A. Facchetti, and T.J. Marks, σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors. PNAS 102, 4678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C. Kim, Z. Wang, H.-J. Choi, Y.-G. Ha, A. Facchetti, and T.J. Marks, Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds. J. Am. Chem. Soc. 130(21), 6867–6878 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Xia, W. Zhang, M. Ha, J.H. Cho, M.J. Renn, C.H. Kim, and C.D. Frisbie, Printed Sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv. Funct. Mater. 20(4), 587–594 (2010).

    Article  CAS  Google Scholar 

  17. L. Herlogsson, Y.Y. Noh, N. Zhao, X. Crispin, H. Sirringhaus, and M. Berggren, Downscaling of organic field-effect transistors with a polyelectrolyte gate insulator. Adv. Mater. 20(24), 4708–4713 (2008).

    Article  CAS  Google Scholar 

  18. L. Zhang, H. Wang, Y. Zhao, Y. Guo, W. Hu, G. Yu, and Y. Liu, Substrate-free ultra-flexible organic field-effect transistors and five-stage ring oscillators. Adv. Mater. 25(38), 5455–5460 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. B. Gburek and V. Wagner, Influence of the semiconductor thickness on the charge carrier mobility in P3HT Organic field-effect transistors in top-gate architecture on flexible substrates. Org. Electron. 11(5), 814–819 (2010).

    Article  CAS  Google Scholar 

  20. W.L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dötz, and S. Mhaisalkar, Solution processed non-volatile top-gate polymer field-effect transistors. J. Mater. Chem. 21(25), 8971 (2011).

    Article  CAS  Google Scholar 

  21. J.H. Choi, Y. Gu, K. Hong, W. Xie, C.D. Frisbie, and T.P. Lodge, High capacitance, photo-patternable ion gel gate insulators compatible with vapor deposition of metal gate electrodes. ACS Appl. Mater. Interfaces 6(21), 19275–19281 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M.J. Renn, T.P. Lodge, and C.D. Frisbie, Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7(11), 900–906 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. K.H. Lee, S. Zhang, T.P. Lodge, and C.D. Frisbie, Electrical impedance of spin-coatable ion gel films. J. Phys. Chem. B 115(13), 3315–3321 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. M.J. Panzer and C.D. Frisbie, High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 20, 88 (2006).

    Google Scholar 

  25. H. Shimotani, H. Asanuma, J. Takeya, and Y. Iwasa, Electrolyte-gated charge accumulation in organic single crystals. Appl. Phys. Lett. 20, 89 (2006).

    Google Scholar 

  26. J. Seo, S. Nam, J. Jeong, C. Lee, H. Kim, and Y. Kim, Liquid crystal-gated-organic field-effect transistors with in-plane drain–source–gate electrode structure. ACS Appl. Mater. Interfaces 7(1), 504–510 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Wang, X. Huang, T. Li, L. Li, X. Guo, and P. Jiang, Polymer-based gate dielectrics for organic field-effect transistors. Chem. Mater. 31(7), 2212–2240 (2019).

    Article  CAS  Google Scholar 

  28. Y.Y. Noh and H. Sirringhaus, Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors. Org. Elecetron. 10(1), 174–180 (2009).

    Article  CAS  Google Scholar 

  29. N.B. Ukah, S.P. Senanayak, D. Adil, G. Knotts, J. Granstrom, K.S. Narayan, and S. Guha, Enhanced mobility and environmental stability in all organic field-effect transistors: the role of high dipole moment solvent. J. Polym. Sci. Part B Polym. Phys. 51(21), 1533–1542 (2013).

    Article  CAS  Google Scholar 

  30. M.A.K.L. Dissanayake, R. Jayathissa, V.A. Seneviratne, C.A. Thotawatthage, G.K.R. Senadeera, and B.E. Mellander, Polymethylmethacrylate (PMMA) based quasi-solid electrolyte with binary iodide salt for efficiency enhancement in TiO2 based dye sensitized solar cells. Solid State Ionics 265, 85–91 (2014).

    Article  CAS  Google Scholar 

  31. Z.A. Kösemen, A. Kösemen, S. Öztürk, B. Canımkurbey, and Y. Yerli, High mobility and low operation voltage organic field effect transistors by using polymer-gel dielectric and molecular doping. Mater. Sci. Semicond. Process. 66, 207–211 (2017).

    Article  Google Scholar 

  32. A. Kösemen, High-performance organic field-effect transistors fabricated with high-k composite polymer gel dielectrics. J. Electron. Mater. 48, 7819–7826 (2019).

    Article  Google Scholar 

  33. I.G. Korodi, D. Lehmann, M. Hietschold, and D.R.T. Zahn, Improving the mobility of CuPc OFETs by varying the preparation conditions. Appl. Phys. A 111(3), 767–773 (2013).

    Article  CAS  Google Scholar 

  34. L. Qin, W. Liu, J. Su, Z. Yang, Z. Liang, X. Li, P. Luan, D.-K. Wang, Z.-H. Lu, and Q. Zhu, Influence of volatile organic compound adsorption on the characteristics of organic field-effect transistors and rules for gas-sensing measurements. Langmuir 39(44), 15756–15765 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. S.M. Sze, Physics of Semiconductor Devices, 2nd ed., (New York: Willey, 1981).

    Google Scholar 

  36. Y.N. Novikov, A.A. Gismatulin, B. Hallac, Y. Roizin, and V.A. Gritsenko, Bipolar charge transport and contact phenomena in Al2O3. Thin Solid Films 781, 140004 (2023).

    Article  CAS  Google Scholar 

  37. K.-L. Tung, K.-T. Lu, R.-C. Ruaan, and J.-Y. Lai, Molecular dynamics study of the effect of solvent types on the dynamic properties of polymer chains in solution. Desalination 192, 1–3 (2006).

    Article  Google Scholar 

  38. G. Knotts, A. Bhaumik, K. Ghosh, and S. Guha, Enhanced performance of ferroelectric-based all organic capacitors and transistors through choice of solvent. Appl. Phys. Lett. 104, 233301 (2014).

    Article  Google Scholar 

  39. N.B. Ukah, J. Granstrom, R.R. Gari Sanganna, G.M. King, and S. Guha, Low-operating voltage and stable organic field-effect transistors with poly (methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl. Phys. Lett. 99, 243302 (2011).

    Article  Google Scholar 

  40. M. Kraus, Charge Carrier Transport in Organic Field-Effect Devices Based on Copper-Phthalocyanine, University of Augsburg, (2011).

  41. M.J. Panzer and C.D. Frisbie, High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv. Funct. Mater. 16(8), 1051–1056 (2006).

    Article  CAS  Google Scholar 

  42. T. Minari, T. Nemoto, and S. Isoda, Temperature and electric-field dependence of the mobility of a single-grain pentacene field-effect transistor. J. Appl. Phys. 99(3), 034506 (2006).

    Article  Google Scholar 

  43. M. Abbas, A. Pivrikas, E. Arici, N. Tekin, M. Ullah, H. Sitter, and N.S. Sariciftci, Temperature dependent charge transport in organic field-effect transistors with the variation of both carrier concentration and electric field. J. Phys. D Appl. Phys. 46, 455105 (2013).

    Article  Google Scholar 

  44. M. Schwarze, C. Gaul, R. Scholz, F. Bussolotti, A. Hofacker, K.S. Schellhammer, B. Nell, B.D. Naab, Z. Bao, D. Spoltore, K. Vandewal, J. Widmer, S. Kera, N. Ueno, F. Ortmann, and K. Leo, Molecular parameters responsible for thermally activated transport in doped organic semiconductors. Nat. Mater. 18(3), 242–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. J. Gao, K. Asadi, J.B. Xu, and J. An, Controlling of the surface energy of the gate dielectric in organic field-effect transistors by polymer blend. Appl. Phys. Lett. 94(9), 093302 (2009).

    Article  Google Scholar 

  46. S. Mallik, S. P. Verma, S. Saha, R. Nayak, P. K. Guha, D. K. Goswami,. in IEEE International Conference on Emerging Electronics (ICEE) Conferenece Proceedings 1–5 (2022)

  47. H.F. Haneef, A.M. Zeidell, and O.D. Jurchescu, Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 8(3), 759–787 (2020).

    Article  CAS  Google Scholar 

  48. T. Minari, T. Nemoto, S. Isoda, Temperature and electric-field dependence of the mobility of a single-grain pentacene field-effect transistor. J. Appl. Phys. 99(3) (2006).

  49. S.F. Nelson, Y.Y. Lin, D.J. Gundlach, and T.N. Jackson, Temperature-independent transport in high-mobility pentacene transistors. J. Appl. Phys. 72(15), 1854–1856 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ŞF, OÖ, RK, and SÖ. The manuscript was written by AK. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Arif Kösemen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 525 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Findik, Ş., Öztürk, S., Örnek, O. et al. Detailed Investigation of Plasticized PMMA Dielectric for Improved Performance of Organic Field-Effect Transistors. J. Electron. Mater. 53, 2554–2561 (2024). https://doi.org/10.1007/s11664-024-10974-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10974-5

Keywords

Navigation