Skip to main content
Log in

Enhancing AlGaN/GaN HEMT Performance through Gate-All-Around AlN Passivation: A Comparative Study with a Planar MIS-HEMT

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article offers a unique method for improving the performance of AlGaN/GaN high-electron-mobility transistors (HEMTs) by combining an AlN interfacial passivation layer with a gate-all-around (GAA) structure, known as a GAA-MIS-HEMT. The carrier concentration, electric field dispersion, and current density of the AlGaN/GaN interface are all strategically improved by the GAA approach. To achieve higher device performance, the two-dimensional electron gas is controlled with greater precision. The results of the GAA-MIS-HEMT configuration are carefully compared to those of the traditional planar-MIS-HEMT in this study, which uses an \(\textrm{Al}_{2}\textrm{O}_{3}\) dielectric. The findings unequivocally establish the superiority of the GAA-MIS-HEMT, showing significant gains in ON-state current, OFF-state current, transconductance, cutoff frequency (11 GHz), ON-state to OFF-state current ratio (\(10^{11}\)), ON-state resistance (0.9 \(\Omega \)\(\textrm{cm}^{2}\)), and subthreshold slope (63 mV/dec). Notably, the constituent layers of the proposed structure are all intended to be doping-free. This study illustrates the potential of the GAA-MIS-HEMT design with AlN passivation for advanced electronic applications, opening up intriguing paths for improving AlGaN/GaN HEMT performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.Y. Wong, Y.S. Chiu, T.T. Luong, T.M. Lin, Y.T. Ho, Y.C. Lin, and E.Y. Chang, Growth and fabrication of AlGaN/GaN HEMT on SiC substrate, in 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE) (IEEE, 2012), pp. 729–732.

  2. P.D. Ye, B. Yang, K.K. Ng, J. Bude, G.D. Wilk, S. Halder, and J.C.M. Hwang, GaN metal-oxide-semiconductor high-electron-mobility transistor with atomic layer deposited Al2O3 as gate dielectric. Appl. Phys. Lett. 86(6), 063501 (2005).

    Article  Google Scholar 

  3. F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, An overview of normally-of GaN-based high electron mobility transistors. Materials 12(10), 1599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Ohno and M. Kuzuhara, Application of GaN-based heterojunction FETs for advanced wireless communication. IEEE Trans. Electron Devices 48(3), 517 (2001).

    Article  CAS  Google Scholar 

  5. T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett. 27(1), 13 (2005).

    Article  Google Scholar 

  6. T.V. Kumar and N.B. Balamurugan, Analytical modeling of InSb/ AlInSbheterostructure dual gate high electron mobility transistors. AEU - Int. J. Electron. Commun. 94, 19 (2018).

    Article  Google Scholar 

  7. M. Kumar, S. Haldar, M. Gupta, and R.S. Gupta, Impact of gate material engineering (GME) on analog/RF performance of nanowire Schottky-barrier gate all around (GAA) MOSFET for low power wireless applications: 3D T-CAD simulation. Microelectron. J. 45(11), 1508–1514 (2014).

    Article  CAS  Google Scholar 

  8. J.T. Park and J.P. Colinge, Multiple-gate SOI MOSFETs: device design guidelines. IEEE Trans. Electron Devices 49(12), 2222 (2002).

    Article  Google Scholar 

  9. P. Ghosh, S. Haldar, R.S. Gupta, and M. Gupta, Analytical modelling and simulation for dual metal gate stack architecture (DMGSA) cylindrical/surrounding gate MOSFET. J. Semicond. Technol. Sci. 12(4), 458 (2012).

    Article  Google Scholar 

  10. U. Soma, A dual gate junctionless FinFET for biosensing applications. Silicon 14, 8881 (2022). https://doi.org/10.1007/s12633-021-01603-5.

    Article  CAS  Google Scholar 

  11. I.H. Hwang, S.K. Eom, G.H. Choi, M.J. Kang, J.G. Lee, H.Y. Cha, and K.S. Seo, High-performance E-mode AlGaN/GaN MIS-HEMT with dual gate insulator employing SiON and HfON. Phys. Status Solidi (A) 215(10), 1700650 (2018).

    Article  Google Scholar 

  12. H. Xiao-Guang, Z. De-Gang, and J. De-Sheng, Formation of two dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression. Chin. Phys. B 24(6), 067301 (2015).

    Article  Google Scholar 

  13. T.E. Hsieh, E.Y. Chang, Y.Z. Song, Y.C. Lin, H.C. Wang, S.C. Liu, S. Salahuddin, and C.C. Hu, Gate recessed quasi-normally OFF Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer. IEEE Electron Device Lett. 35(7), 732 (2014).

    Article  CAS  Google Scholar 

  14. S. Panchanan, R. Maity, S. Baishya, and N.P. Maity, Modeling, simulation and analysis of surface potential and threshold voltage: application to high-K material HfO2 based FinFET. Silicon 13, 3271–3289 (2020).

    Article  Google Scholar 

  15. Atlas user’s manual. (Silvaco, Santa Clara, 2016).

  16. J.-P. Colinge, FinFETs and Other Multi-gate Transistors (Springer, New York, 2008).

    Book  Google Scholar 

  17. R. Kumar and M. Panchore, Impact of back gate bias on analog performance of dopingless transistor. Trans. Electr. Electron. Mater. 24, 115 (2023).

    Article  Google Scholar 

  18. S.S. Mohanty, S. Mishra, M. Mohapatra, and G. Prasad Mishra, Dielectrically modulated hetero channel double gate MOSFET as a label free biosensor. Trans. Electr. Electron. Mater. 23, 156 (2022).

    Article  Google Scholar 

  19. A. Bhardwaj, P. Kumar, B. Raj, and S. Anand, Design and performance analysis of a GAA electrostatic doped negative capacitance vertical nanowire tunnel FET. J. Electron. Mater. 52, 3103 (2023).

    Article  CAS  Google Scholar 

  20. D. Ghai, S.P. Mohanty, and G. Thakral, Comparative analysis of double gate FinFET configurations for analog circuit design, in 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS) (Columbus, 2013), pp. 809–812.

  21. S. Cho, K.R. Kim, B.G. Park, and I.M. Kang, RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388 (2011).

    Article  Google Scholar 

  22. U.K. Mishra, P. Parikh, and Y.F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 90(6), 1022 (2002).

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umamaheshwar Soma.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethics Approval

The author declares that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soma, U. Enhancing AlGaN/GaN HEMT Performance through Gate-All-Around AlN Passivation: A Comparative Study with a Planar MIS-HEMT. J. Electron. Mater. 53, 2477–2487 (2024). https://doi.org/10.1007/s11664-024-10940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10940-1

Keywords

Navigation