Skip to main content
Log in

Impact of Noise and Interface Trap Charge on a Heterojunction Dual-Gate Vertical TFET Device

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Herein, a vertical T-shaped heterojunction tunnel field-effect transistor (TFET) structure is proposed. This paper explores the effect of the traps and noise on the electrical characteristics. TFET devices work on the principle of band-to-band tunneling (BTBT). In order to increase the BTBT rate, the proposed structure uses an InP/In0.47Ga0.53 as the heterojunction at the source. In addition, this structure has dual metal gates: gate 1 with a 4.3 eV work function and gate 2 with a 4.1 eV work function. The effect of noise on device performance is investigated in terms of the voltage noise spectral density (Svg) and current noise spectral density (Sid), and the noise spectral densities are compared in the presence of interface trap concentrations. Finally, the variation in noise density with frequency is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K. Han, S. Long, Z. Deng, Y. Zhang, and J. Li, A novel germanium-around-source gate-all-around tunnelling field-effect transistor for low-power applications. Micromachines 11, 164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. S.W. Kim, J.H. Kim, T.J.K. Liu, W.Y. Choi, and B.G. Park, Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Devices 63, 1774 (2016).

    Article  ADS  CAS  Google Scholar 

  3. I.A. Pindoo, S.K. Sinha, and S. Chander, Performance analysis of heterojunction tunnel FET device with variable temperature. Appl. Phys. A 127, 748 (2021).

    Article  CAS  Google Scholar 

  4. J.E. Jeyanthi, T.S. Arun, Samuel, Heterojunction Tunnel Field Effect Transistors—A Detailed Review, In: 2020 5th International Conference on Devices, Circuits and Systems (2020), p. 326–329

  5. P.K. Dubey, and B.K. Kaushik, T-shaped III-V heterojunction tunneling field-effect transistor. IEEE Trans. Electron Devices 64(8), 3120 (2017).

    Article  ADS  CAS  Google Scholar 

  6. P.K. Dubey, and B.K. Kaushik, Evaluation of circuit performance of T-shaped tunnel FET. IET Circuits Devices Syst. 14(5), 667 (2020).

    Article  Google Scholar 

  7. P. Singh, D.P. Samajdar, D.S. Yadav, A Low Power Single Gate L-shaped TFET for High Frequency Application.In: 6th International Conference for Convergence in Technology (2021), pp. 1–6

  8. V.D. Wangkheirakpam, B. Bhowmick, and P.D. Pukhrambam, Investigation of N+ pocket-doped junctionless vertical TFET and its digital inverter application in the presence of true noises. Appl. Phys. A 126, 798 (2020).

    Article  ADS  CAS  Google Scholar 

  9. R. Han, H. Zhang, D. Wang, Inverted π-shaped Si/Ge Tunneling Field Effect Transistor. In: 14th IEEE International Conference on Solid-State and Integrated Circuit Technology, (2018), pp.1-3

  10. S. Gupta, S. Wairya, S. singh, Design and Investigation of Gate Stacked Vertical TFET with N+ SiGe Pocket Doped Heterojunction for Performance Enhancement. Research Square, (2021)

  11. M. Saravanan, and E. Parthasarathy, A review of III-V tunnel field effect transistors for future ultra low power digital/analog applications. Microelectron. J. 114, 105102 (2021).

    Article  CAS  Google Scholar 

  12. R. Han, H.C. Zhang, D.H. Wang, and C. Li, Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer. Chin. Phys. B 28, 018505 (2019).

    Article  ADS  CAS  Google Scholar 

  13. S. Gupta, S. Wairya, and S. Singh, Analytical modeling and simulation of a triple metal vertical TFET with hetero-junction gate stack. Superlattices Microstruct. 157, 106992 (2021).

    Article  CAS  Google Scholar 

  14. S. Badgujjar, G. Wadhwa, and S. Singh, Design and analysis of dual source vertical tunnel field effect transistor for high performance. Trans. Electr. Electron. Mater. 21, 74 (2020).

    Article  Google Scholar 

  15. K. Biswas, A. Sarkar, and C.K. Sarkar, Effect of varying Indium concentration of InGaAs channel on device and circuit performance of nanoscale double gate heterostructure MOSFET. Micro Nano Lett. 13, 690 (2018).

    Article  CAS  Google Scholar 

  16. K. Nasani, B. Bhowmick, and P.D. Pukhrambam, Effect of lateral straggle parameter on hetero junction dual gate vertical TFET. Microelectron. J. 138, 105845 (2023).

    Article  CAS  Google Scholar 

  17. X. Zhao, L. Hongliang, M. Zhao, Y. Zhang, and Y. Zhang, The study of deep level traps and their influence on current characteristics of InP/InGaAs heterostructures. Nanomaterials 9(8), 1141 (2019). https://doi.org/10.3390/nano9081141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S.K. Gupta, and S. Baishya, Analog and RF performance evaluation of dual metal double gate high-k stack (DMDG-HKS) MOSFETs. J. Nano Electron. Phys. 5(3), 3008 (2013).

    Google Scholar 

  19. K. Vanlalawpuia, and B. Bhowmick, Investigation of a Ge-source vertical TFET with delta-doped layer. IEEE Trans. Electron Devices 66, 4439 (2019).

    Article  ADS  Google Scholar 

  20. S. Meriga, and B. Bhowmick, Investigation of a dual gate pocket-doped drain engineered tunnel FET and its reliability issues. Appl. Phys. A 129, 104 (2023).

    Article  ADS  CAS  Google Scholar 

  21. I. Oshima, Y. Ikeda, S. Sakai, A.A. Yamaguchi, S. Kusanagi, Y. Kanitani, and S. Tomiya, Impact of potential fluctuation on temperature dependence of optical gain characteristics in InGaN quantum-well laser diodes. Jpn. J. Appl. Phys. 60, 122003 (2021).

    Article  ADS  CAS  Google Scholar 

  22. A. Dutta, K. Koley, and C.K. Sarkar, Analysis of harmonic distortion in asymmetric underlap DG-MOSFET with high-k spacer. Microelectron. Reliabil. 54(6), 1125 (2014).

    Article  Google Scholar 

  23. P. Razavi, A.A. Orouji, Nanoscale Triple Material Double Gate (TM-DG) MOSFET for Improving Short Channel Effects. In: International Conference on Advances in Electronics and Micro-electronics, (2008), pp. 11–14

  24. R.K. Maurya, R. Saha, and B. Bhowmick, Low to high-frequency noise behavior investigation of steeper sub-threshold swing NC-GeFinFET. Microelectronics. 131, 105642 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIT, Silchar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Nasani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasani, K., Bhowmick, B. & Pukhrambam, P.D. Impact of Noise and Interface Trap Charge on a Heterojunction Dual-Gate Vertical TFET Device. J. Electron. Mater. 53, 2181–2190 (2024). https://doi.org/10.1007/s11664-024-10927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10927-y

Keywords

Navigation