Skip to main content
Log in

Interplay Between Structural and Magnetic Properties and Positron Annihilation Studies for Mn-Zn Nano-Ferrites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Series of nanosized ferrite powder Mn1-xZnxFe2O4, 0 ≤ x ≤ 0.9, were prepared through flash combustion using the metal nitrates. The nano-ferrite particles were characterized using different experimental techniques. The defects and microstructure changes of the prepared Mn-Zn ferrite samples were probed using positron annihilation spectroscopy (PAS). The single-phase structure (spinel cubic) for the ferrite samples was confirmed by the x-ray diffraction patterns and Fourier-transform infrared spectra. The cation distribution of Mn1-xZnxFe2O4 was proposed by matching the values of the experimental and theoretical lattice parameters. Also, the B-site cation distribution was modified using the three-sublattice model to adjust the values of the magnetic moments. The results of scanning and transmission electron microscopy (SEM and TEM, respectively) reflect the polycrystalline and nanosized features of the Mn-Zn ferrite nanoparticles, < 26.9 nm. The results reveal that the zinc ions enhance the grain growth from 34 nm to 60 nm. The results showed that the studied samples are soft magnetic ferrites and that their magnetic behavior changes from ferrimagnetic to paramagnetic at higher values of Zn content. The results of the Hall effect measurements revealed the presence of an inverse relationship between charge carrier concentration and zinc content. The results of the PAS measurements revealed that the positrons are trapped and annihilated in di-vacancy-type defects and/or triple junctions present in the ferrite samples. Also, the results suggested that the tetrahedral sites are preferred as the predominant positron trapping sites for high Zn content samples. The correlations between the PAS parameters and other parameters of the experimental techniques used, such as Hall effect measurements, confirmed these findings.

Graphical Abstract

MnZnFe2O4 nanoparticle preparation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Hyun Noh, S.H. Moon, T.H. Shin, Y. Lim, and J. Cheon, Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications. Nano Today 13, 61 (2017).

    Article  Google Scholar 

  2. M.I.A. Abdel Maksoud, A.M. Elgarahy, C. Farrell, A.H. Al-Muhtaseb, D.W. Rooney, and A.I. Osman, Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 403, 213096 (2020).

    Article  Google Scholar 

  3. C. Blanco-Andujar, F.J. Teran, and D. Ortega, Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia, in Iron Oxide Nanoparticles for biomedical Applications, pp. 197 (2018)

  4. B.J. Rani, R. Mageswari, G. Ravi, V. Ganesh, and R. Yuvakkumar, Physico-chemical properties of pure and zinc incorporated cobalt nickel mixed ferrite (ZnxCo0.005−xNi0.005Fe2O4, where x = 0, 0.002, 0004 M ) nanoparticles. J. Mater. Sci. Mater. Electron. 28, 16450 (2017).

    Article  CAS  Google Scholar 

  5. A. Ghasemi, Particle size dependence of magnetic features for Ni0.6−xCuxZn0.4Fe2O4 spinel nanoparticles. J. Magn. Mater. 360, 41 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Y. Fukuda, S. Nagata, and K. Echizenya, Electrical conductivity of MnZn ferrite single crystals with a small number of Fe2+ ions. J. Magn. Mater. 279, 325 (2004).

    Article  ADS  CAS  Google Scholar 

  7. R.A. Bohara, N.D. Thorat, A.K. Chaurasia, and S.H. Pawar, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv. 5, 47225 (2015).

    Article  ADS  CAS  Google Scholar 

  8. E.C. Devi and I. Soibam, An investigation on the optical band gap and Ac conductivity of Mn-Zn nanoferrites. J. Supercond. Magn. 31, 1183 (2018).

    Article  CAS  Google Scholar 

  9. A. Demir, S. Güner, Y. Bakis, S. Esir and A. Baykal, Magnetic and optical properties of Mn1−xZnxFe2O4 Nanoparticles. J. Inorg. Organomet. Polym. Mater. 24, 729 (2014).

    Article  CAS  Google Scholar 

  10. A. Baykal, S. Güner, A. Demir, S. Esir and F. Genç, Effect of zinc substitution on magneto-optical properties of Mn1−xZnxFe2O4/SiO2 nanocomposites. Ceram. Int. 8, 13401 (2014).

    Article  Google Scholar 

  11. L.M. Slavu, R. Rinaldi and R. Di Corato, Application in nanomedicine of manganese-zinc ferrite nanoparticles. Appl. Sci. 11, 11183 (2021).

    Article  CAS  Google Scholar 

  12. S. Cheraghali, G. Dini, I. Caligiuri, M. Back and F. Rizzolio, PEG-coated MnZn ferrite nanoparticles with hierarchical structure as MRI contrast agent. Nanomaterials 13, 452 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Lin, J. Huang and M. Sha, Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment. J. Nanosci. Nanotechnol. 14, 792 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. A.M. Gama, M.C. Rezende and C.C. Dantas, Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J. Magn. Mater. 323, 2782 (2011).

    Article  ADS  CAS  Google Scholar 

  15. O.M. Hemeda, M.E.A. Eid, T. Sharshar, H.M. Ellabany and A.M.A. Henaish, Synthesis of nanometer-sized PbZrxTi1-xO3 for gamma-ray attenuation. J. Phys. Chem. Solids 148, 109688 (2021).

    Article  CAS  Google Scholar 

  16. A.M.A. Henaish, A.N. El-Sharkawy, S.A. Shama, O.M. Hemeda and R. Ghazy, Structure and optical properties of nano NixCd1-xFe2O4 doped with optical dyes. J. Phys. Conf. Ser. 1253, 012024 (2019).

    Article  CAS  Google Scholar 

  17. A.M.A. Henaish, M. Mostafa, B.I. Salem and O.M. Hemeda, Improvement of magnetic and dielectric properties of magnetoelectric BST-NCZMF nano-composite. Phase Trans. 93, 470 (2020).

    Article  CAS  Google Scholar 

  18. J. Zhang, H. Zhang, H. Wang, F. Chen and Y. Zhao, Extruded conductive silicone rubber with high compression recovery and good aging-resistance for electromagnetic shielding applications. Polym. Compos. 40, 1078 (2019).

    Article  CAS  Google Scholar 

  19. C. Morari, I. Balan, J. Pintea, E. Chitanu and I. Iordache, Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Progress Electromagn. Res. M 21, 93 (2011).

    Article  Google Scholar 

  20. S.A. Seyedmehdi, H. Zhang and J. Zhu, Superhydrophobic RTV silicone rubber insulator coatings. Appl. Surf. Sci. 258, 2972 (2012).

    Article  ADS  CAS  Google Scholar 

  21. V.J. Angadi, L. Choudhury, K. Sadhana, H.L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar and K. Praveena, Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Mater. 424, 1 (2017).

    Article  ADS  CAS  Google Scholar 

  22. M.R. Syue, F.J. Wei, C.S. Chou and C.M. Fu, Magnetic and electrical properties of Mn-Zn ferrites synthesized by combustion method without subsequent heat treatments. J. Appl. Phys. 109, 7 (2011).

    Article  Google Scholar 

  23. A. Dupasquier and A.P. Mills jr. Positron Spectroscopy of Solids EUR. 183,50 (1993)

  24. H. Nikmanesh, P. Kameli, S.M. Asgarian, S. Karimi, M. Moradi, Z. Kargar, J. Ventura, B. Bordalo and H. Salamati, Positron annihilation lifetime, cation distribution and magnetic features of Ni1−xZnxFe2−xCoxO4 ferrite nanoparticles. RSC Adv. 7, 22320 (2017).

    Article  ADS  CAS  Google Scholar 

  25. Y.C. Jean, P.E. Mallon and D.M. Schrader, Principles and Applications of Positron and Positronium Chemistry, Principles and Applications of Positron and Positronium Chemistry. (2003)

  26. K. Yoshikawa, K. Masuda, T. Takamatsu, S. Shiroya, T. Misawa, E. Hotta, M. Ohnishi, K. Yamauchi, H. Osawa and Y. Takahashi, Research and development of a compact discharge-driven D-D fusion neutron source for explosive detection. Nucl. Instrum. Methods Phys. Res. B 261, 299 (2007).

    Article  ADS  CAS  Google Scholar 

  27. Positron Spectroscopy of Solids—Società italiana di fisica , (n.d.). 24, (2023)

  28. Z. Kargar, S.M. Asgarian and M. Mozaffari, Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles. Nucl. Instrum. Methods Phys. Res. B 375, 71 (2016).

    Article  ADS  CAS  Google Scholar 

  29. H.E. Hassan, T. Sharshar, M.M. Hessien and O.M. Hemeda, Effect of γ-rays irradiation on Mn-Ni ferrites: structure, magnetic properties and positron annihilation studies. Nucl. Instrum. Methods Phys. Res. B 304, 72 (2013).

    Article  ADS  CAS  Google Scholar 

  30. A.M.A. Henaish, M.M. Ali, D.E.E. Refaay, I.A. Weinstein and O.M. Hemeda, Synthesis, electric and magnetic characterization of nickel ferrite/PANI nano-composite prepared by flash auto combustion method. J. Inorg. Organomet. Polym. Mater. 31, 731 (2021).

    Article  CAS  Google Scholar 

  31. W. Alpers, Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425 (1969).

    Article  ADS  Google Scholar 

  32. T. Sharshar and M.L. Hussein, An optimization of energy window settings for positron annihilation lifetime spectrometers. Nucl. Instrum. Methods Phys. Res. A 546, 584 (2005).

    Article  ADS  CAS  Google Scholar 

  33. J. Kansy, Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. A 374, 235 (1996).

    Article  ADS  CAS  Google Scholar 

  34. A.O. Porto, G.G. Silva, W.F. Magalha˜es and M. Magalha˜es, Free volume‐size dependence on temperature and average molecular‐weight in poly (ethylene oxide) determined by positron annihilation lifetime spectroscopy, Wiley Online Library. 37, 219 (1999)

  35. E.A. McGonigle, J.J. Liggat, R.A. Pethrick, S.D. Jenkins, J.H. Daly and D. Hayward, Permeability of N2, Ar, He, O2 and CO2 through biaxially oriented polyester films—dependence on free volume. Polymer 42, 2413 (2001).

    Article  CAS  Google Scholar 

  36. K. Ito, Y. Ujihira, T. Yamashita and K. Horie, Free-volume change in volume phase transition of polyacrylamide gel as studied by positron annihilation: salt dependence. J. Polym. Sci. B Polym. Phys. 37, 2634 (1999).

    Article  ADS  CAS  Google Scholar 

  37. M. Eldrup, D. Lightbody and J.N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 63, 51 (1981).

    Article  CAS  Google Scholar 

  38. V. Jagadeesha Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy and K. Praveena, Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn-Zn ferrites synthesized via combustion route. J. Alloys Compd. 656, 5 (2016).

    Article  CAS  Google Scholar 

  39. B. Dhanalakshmi, K. Pratap, B. Parvatheeswara Rao and P.S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics. J. Alloys Compd. 676, 193 (2016).

    Article  CAS  Google Scholar 

  40. B. Cullity, Elements of x-ray Diffraction (1956)

  41. U. Ghazanfar, S.A. Siddiqi and G. Abbas, Structural analysis of the Mn–Zn ferrites using XRD technique. Mater. Sci. Eng. B 118, 84 (2005).

    Article  Google Scholar 

  42. D. Varshney, K. Verma and A. Kumar, Structural and vibrational properties of ZnxMn1−xFe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater. Chem. Phys. 131, 413 (2011).

    Article  CAS  Google Scholar 

  43. A.A. Sattar, H. El-Sayed, M.M. Eltabey, H.M. El-Sayed, K.M. El-Shokrofy and M.M. El-Tabey, Improvement of the magnetic properties of Mn-Ni-Zn ferrite by the non-magnetic Al3+ion substitution. J. Appl. Sci. 5, 162 (2005).

    Article  ADS  Google Scholar 

  44. C. Venkataraju, G. Sathishkumar and K. Sivakumar, Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method. J. Magn. Magn. Mater. 322, 230 (2010).

    Article  ADS  CAS  Google Scholar 

  45. O.M. Hemeda, M.I. Abdel-Ati, B.I. Salem, A.M.A. Henaish and F.S. El-Sbakhy, Spectral studies of nano Ni ferrite doped with Cr ions. Eur. Phys. J. Plus 133, 531 (2018).

    Article  Google Scholar 

  46. J.S. Smart, The néel theory of ferrimagnetism. Am. J. Phys. 23, 356 (1955).

    Article  ADS  CAS  Google Scholar 

  47. M. Deepty, C. Srinivas, E.R. Kumar, N.K. Mohan, C.L. Prajapat, T.V.C. Rao, S.S. Meena, A.K. Verma and D.L. Sastry, XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram. Int. 45, 8037 (2019).

    Article  CAS  Google Scholar 

  48. G. Chandrasekaran, S. Selvanandan and K. Manivannane, Electrical and FTIR studies on Al substituted Mn-Zn mixed ferrites. J. Mater. Sci. Mater. Electron. 15, 15 (2004).

    Article  CAS  Google Scholar 

  49. S. Suwanboon and T. Ratana, Effects of Al and Mn dopant on structural and optical properties of ZnO thin film prepared by Sol–Gel Route. WJST 4, 111 (2011).

    Google Scholar 

  50. P.G. Bercoff and H.R. Bertorello, Localized canting effect in Zn-substituted Ni ferrites. J. Magn. Magn. Mater. 213, 56 (2000).

    Article  ADS  CAS  Google Scholar 

  51. H. Dawoud, L.A. Ouda and S. Shaat, Synthetize and magnetic properties of Ni substituted polycrystalline Zn-spinel ferrites. Ijraset 4, 111 (2016).

    Google Scholar 

  52. S.D. Oberdick, A. Abdelgawad, C. Moya, S. Mesbahi-Vasey, D. Kepaptsoglou, V.K. Lazarov, R.F.L. Evans, D. Meilak, E. Skoropata, J. Van Lierop, I. Hunt-Isaak, H. Pan, Y. Ijiri, K.L. Krycka, J.A. Borchers and S.A. Majetich, Spin canting across core/shell Fe3O4/MnxFe3-xO4 nanoparticles. Sci. Rep. 8, 1 (2018).

    Article  CAS  Google Scholar 

  53. A.M.A. Henaish, H.R. Darwish, T. Sharshar, M.R. Eraky, O.M. Hemeda and A. Elmekawy, Study the effect of microstructure changes on the photocatalytic performance of Ni and Zn nanoferrites. Appl. Phys. A 129(11), 745 (2023).

    Article  ADS  CAS  Google Scholar 

  54. S. Ghosh, P.M.G. Nambissan and R. Bhattacharya, Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4. Phys. Lett. A 325, 301 (2004).

    Article  ADS  CAS  Google Scholar 

  55. P. Hautojärvi, Positrons in Solids, 12 (1979)

  56. S. Bandyopadhyay, A. Roy, D. Das, S.S. Ghugre and J. Ghose, Investigation of nanocrystalline CoFe2O4 by positron annihilation lifetime spectroscopy. Philos. Mag. 83, 765 (2010).

    Article  ADS  Google Scholar 

  57. A. Banerjee, S. Bid, H. Dutta, S. Chaudhuri, D. Das and S.K. Pradhan, Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling. Mater. Res. 15, 1022 (2012).

    Article  CAS  Google Scholar 

  58. O.M. Hemeda and M.M. Barakat, Effect of hopping rate and jump length of hopping electrons on the conductivity and dielectric properties of Co–Cd ferrite. J. Magn. Mater. 223, 127 (2001).

    Article  ADS  CAS  Google Scholar 

  59. C. He, T. Suzuki, V.P. Shantarovich, N. Djourelov, K. Kondo and Y. Ito, Positron annihilation studies of hyper-cross-linked polystyrenes. Chem. Phys. 303, 219 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. A. Henaish.

Ethics declarations

Conflict of interest

All co-authors have seen and agreed with the content of this submission, and informed that there is no conflict of interests associated with this work. This is for your kind consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, E., Mahmoud, K.R., Hemeda, O.M. et al. Interplay Between Structural and Magnetic Properties and Positron Annihilation Studies for Mn-Zn Nano-Ferrites. J. Electron. Mater. 53, 1738–1751 (2024). https://doi.org/10.1007/s11664-023-10893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10893-x

Keywords

Navigation