Skip to main content
Log in

Development of Carbon Nanotube-Supported Metal (Mo, Ga, Bi)-Doped Polyacrylic Acid Electrodes for Supercapacitor Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polyacrylic acid (PAAc) polymer was synthesized using a radical polymerization method that involved sequential mixing of monomer, cross-linker, accelerator, and initiator. Subsequently, polymer composites with carbon nanotube (CNT) and molybdenum (Mo), gallium (Ga), and bismuth (Bi))/CNT catalysts were synthesized using identical parameters. The hydrogels were characterized using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray analysis (SEM–EDX) and mapping, infrared reflection–absorption spectroscopy (IRRAS), and micro-Raman spectroscopy. The PAAc-graft(g)-(Mo/CNT) electrode, which acts as a supercapacitor electrode, displayed a significant specific capacitance of 160.80 F g−1 at 10 mV s−1. After 5000 cycles, PAAc-g-(Mo/CNT), PAAc-g-(Ga/CNT), and PAAc-g-(Bi/CNT) demonstrated capacitance retention of 80.7%, 75.9%, and 62.5%, respectively. Comparing the results from cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance tests, it was determined that the electrode containing Mo exhibits superior and more robust electrochemical stability than electrodes containing Ga and Bi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Code Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Wang, P. Sun, G. Qu, J. Yin, and X. Xu, Nickel/cobalt based materials for supercapacitors. Chin. Chem. Lett. 29, 1731 (2018).

    Article  CAS  Google Scholar 

  2. X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, and T. Zhai, Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410 (2017).

    Article  CAS  Google Scholar 

  3. P. Zhu, X. Li, H. Yao, and H. Pang, Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. J. Energy Storage 31, 101544 (2020).

    Article  Google Scholar 

  4. Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, and C. Zhi, Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22, 422 (2016).

    Article  CAS  Google Scholar 

  5. D.S. Patil, S.A. Pawar, R.S. Devan, S.S. Mali, M.G. Gang, Y.R. Ma, C.K. Hong, J.H. Kim, and P.S. Patil, Polyaniline based electrodes for electrochemical supercapacitor: synergistic effect of silver, activated carbon and polyaniline. J. Electroanal. Chem. 724, 21 (2014).

    Article  CAS  Google Scholar 

  6. J.S. Shaikh, R.C. Pawar, A.V. Moholkar, J.H. Kim, and P.S. Patil, CuO–PAA hybrid films: chemical synthesis and supercapacitor behavior. Appl. Surf. Sci. 257, 4389 (2011).

    Article  CAS  Google Scholar 

  7. S. Wang, D. Wang, L. Ji, Q. Gong, Y. Zhu, and J. Liang, Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes. Sep. Purif. Technol. 58, 12 (2007).

    Article  CAS  Google Scholar 

  8. C. Nie, L. Pan, Y. Liu, H. Li, T. Chen, T. Lu, and Z. Sun, Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization. Electrochim. Acta 66, 106 (2012).

    Article  CAS  Google Scholar 

  9. M.Z. Ansari, S.A. Ansari, and S.-H. Kim, Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: a comprehensive review. J. Energy Storage 53, 105187 (2022).

    Article  Google Scholar 

  10. L.-J. Zhang, C.-H. Wang, Y.-B. Zhang, Q. Guo, R.-Y. Ma, J.-X. Zhang, and S.-J. Na, The mechanical properties and interface bonding mechanism of Molybdenum/SUS304L by laser beam welding with nickel interlayer. Mater. Des. 182, 108002 (2019).

    Article  CAS  Google Scholar 

  11. W. Wang, F. Xiong, S. Zhu, J. Chen, J. Xie, and Q. An, Defect engineering in molybdenum-based electrode materials for energy storage. EScience 2, 278 (2022).

    Article  Google Scholar 

  12. H. Zhang, Y. Bai, H. Chen, J. Wu, C.M. Li, X. Su, and L. Zhang, Oxygen-defect-rich 3D porous cobalt-gallium layered double hydroxide for high-performance supercapacitor application. J. Colloid Interface Sci. 608, 1837 (2022).

    Article  CAS  Google Scholar 

  13. N. Devi and S.S. Ray, Performance of bismuth-based materials for supercapacitor applications: a review. Mater. Today Commun. 25, 101691 (2020).

    Article  CAS  Google Scholar 

  14. S. Yazar and G. Atun, Electrochemical synthesis of tunable polypyrrole-based composites on carbon fabric for wide potential window aqueous supercapacitor. Int. J. Energy Res. 46, 10 (2022).

    Article  Google Scholar 

  15. M.B. Arvas, M. Gencten, and Y. Sahin, One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics (Kiel) 27, 2241 (2021).

    Article  CAS  Google Scholar 

  16. L. Feng, H. Yang, X. Dong, H. Lei, and D. Chen, pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition: research article. J. Appl. Polym. Sci. 135, 45886 (2017).

    Article  Google Scholar 

  17. A. Sayed, F. Hany, M.E.-S. Abdel-Raouf, and G.A. Mahmoud, Gamma irradiation synthesis of pectin—based biohydrogels for removal of lead cations from simulated solutions. J. Polym. Res. 29, 372 (2022).

    Article  CAS  Google Scholar 

  18. A.S. Al-Gorair, A. Sayed, and G.A. Mahmoud, Engineered superabsorbent nanocomposite reinforced with cellulose nanocrystals for remediation of basic dyes: isotherm, kinetic, and thermodynamic studies. Polymers (Basel) 14, 567 (2022).

    Article  CAS  Google Scholar 

  19. S. Ahmad, S. Ahmad, and S.A. Agnihotry, Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bull. Mater. Sci. 30, 31 (2007).

    Article  CAS  Google Scholar 

  20. D. Kim, D. Lee, and H. Sohn, Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation. J. Nanosci. Nanotechnol. 14, 6427 (2014).

    Article  CAS  Google Scholar 

  21. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  22. A.A. Yadav and U.J. Chavan, Electrochemical supercapacitive performance of spray deposited Co3O4 thin film nanostructures. Electrochim. Acta 232, 370 (2017).

    Article  CAS  Google Scholar 

  23. L. Qingyu, L. Na, S. Jin, G. Yang, and C. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9 (2015).

  24. C. Lai and W. Kang, Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors. Adv. Mater. Sci. 3, 1 (2018).

    Google Scholar 

  25. J. Li, X. Song, W. Zhang, H. Xu, T. Guo, X. Zhang, J. Gao, H. Pang, and H. Xue, Microporous carbon nanofibers derived from poly(acrylonitrile-co-acrylic acid) for high-performance supercapacitors. Chem. A Eur. J. 26, 3326 (2020).

    Article  CAS  Google Scholar 

  26. D.S. Patil, S.A. Pawar, R.S. Devan, M.G. Gang, Y.-R. Ma, J.H. Kim, and P.S. Patil, Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochim. Acta 105, 569 (2013).

    Article  CAS  Google Scholar 

  27. W. Dong, Z. Wang, Q. Zhang, M. Ravi, M. Yu, Y. Tan, Y. Liu, L. Kong, L. Kang, and F. Ran, Polymer/block copolymer blending system as the compatible precursor system for fabrication of mesoporous carbon nanofibers for supercapacitors. J. Power. Sources 419, 137 (2019).

    Article  CAS  Google Scholar 

  28. J.S. Shaikh, R.C. Pawar, N.L. Tarwal, D.S. Patil, and P.S. Patil, Supercapacitor behavior of CuO–PAA hybrid films: effect of PAA concentration. J. Alloy. Compd. 509, 7168 (2011).

    Article  CAS  Google Scholar 

  29. M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, and K. Ogura, Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir 21, 5907 (2005).

    Article  CAS  Google Scholar 

  30. J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, and P.M. Johnson, A facile sonochemical assisted synthesis of α-MnMoO4/PANI nanocomposite electrode for supercapacitor applications. J. Electroanal. Chem. 797, 78 (2017).

    Article  Google Scholar 

  31. L. Gao, G. Chen, L. Zhang, B. Yan, and X. Yang, Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors. Electrochim. Acta 379, 138185 (2021).

    Article  CAS  Google Scholar 

  32. Y. Arora, A.P. Shah, S. Battu, C.B. Maliakkal, S. Haram, A. Bhattacharya, and D. Khushalani, Nanostructured MoS2/BiVO4 composites for energy storage applications. Sci. Rep. 6, 36294 (2016).

    Article  CAS  Google Scholar 

  33. F. Sun, J. Gao, X. Liu, L. Wang, Y. Yang, X. Pi, S. Wu, and Y. Qin, High-energy Li-ion hybrid supercapacitor enabled by a long life N-rich carbon based anode. Electrochim. Acta 213, 626 (2016).

    Article  CAS  Google Scholar 

  34. S. Yazar, M.B. Arvas, S.M. Yilmaz, and Y. Sahin, Effects of pyridinic N of carboxylic acid on the polymerization of polyaniline and its supercapacitor performances. J. Energy Storage 55, 105740 (2022).

    Article  Google Scholar 

  35. M.B. Arvas, H. Gürsu, M. Gencten, and Y. Sahin, Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J. Energy Storage 35, 102328 (2021).

    Article  Google Scholar 

  36. N.O. Laschuk, E.B. Easton, and O.V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 11, 27925 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Scientific Research Projects Commission (Project No. 2689) at Eskisehir Osmangazi University.

Author information

Authors and Affiliations

Authors

Contributions

HK: Conceptualization, Methodology, Writing—Reviewing and Editing, Supervision. SY: Conceptualization, Methodology, Writing—Reviewing and Editing, Supervision. AC: Investigation, Formal analysis, Writing—Original draft preparation. DA: Investigation, Formal analysis, Writing—Original draft preparation.

Corresponding authors

Correspondence to Sibel Yazar or Hilal Kivrak.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

No experiments were carried out involving human tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alovn, D., Yazar, S., Caglar, A. et al. Development of Carbon Nanotube-Supported Metal (Mo, Ga, Bi)-Doped Polyacrylic Acid Electrodes for Supercapacitor Applications. J. Electron. Mater. 53, 991–1001 (2024). https://doi.org/10.1007/s11664-023-10832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10832-w

Keywords

Navigation