Skip to main content
Log in

Enhanced Photocatalytic Hydrogen Production on Cd-, Te-, Se-, and S-Doped Titanium Dioxide Catalysts

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Herein, cadmium (Cd)-, tellurium (Te)-, selenium (Se)-, and sulfur (S)-doped titanium dioxide (TiO2) support material catalysts are prepared via incipient wetness impregnation. Hydrogen generation performances of the prepared catalysts from sodium borohydride (NaBH4) by methanolysis are investigated. Experimental studies are carried out under ultraviolet (UV) illumination and in the dark. The highest initial hydrogen generation rate is reached on 0.1% Cd/TiO2 catalyst under UV illumination. The optimum catalyst, sodium borohydride, and methanol amounts and temperature parameters affecting the initial hydrogen generation rate are investigated and obtained as 0.025 g, 0.150 g, 2 mL, and 60°C, respectively. The initial hydrogen generation rate of 0.1% Cd/TiO2 catalyst is 16130.64 mL/min.gcat in optimum conditions. The activation energy of the reaction with the 0.1% Cd/TiO2 catalyst is calculated by carrying out kinetic studies. The activation energy is 22.48 kJ/mol. X-ray diffraction (XRD), electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX), inductively coupled plasma mass spectrometry (ICP-MS), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) analytical techniques are performed to characterize the catalysts. The results show that TiO2 catalysts doped with Cd, Te, Se, and S, which are cheaper than noble metals, are promising for the production of hydrogen from NaBH4 by methanolysis under UV illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Bridges, F.A. Felder, K. McKelvey, and I. Niyogi, Uncertainty in energy planning: estimating the health impacts of air pollution from fossil fuel electricity generation. Energy Res. Social Sci. 6, 74 (2015).

    Article  Google Scholar 

  2. M. Jorli, S. Van Passel, H. Sadeghi, A. Nasseri, and L. Agheli, Estimating human health impacts and costs due to Iranian fossil fuel power plant emissions through the impact pathway approach. Energies 10, 2136 (2017).

    Article  Google Scholar 

  3. Z.Q. Yang, Y.Q. Wu, Z.S. Zhang, H. Li, X.G. Li, R.I. Egorov, P.A. Strizhak, and X. Gao, Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renew. Sustain. Energy Rev. 103, 384 (2019).

    Article  CAS  Google Scholar 

  4. J. Kotcher, E. Maibach, and W.T. Choi, Fossil fuels are harming our brains: identifying key messages about the health effects of air pollution from fossil fuels. Bmc Public Health 19, 1 (2019).

    Article  Google Scholar 

  5. F. Martins, C. Felgueiras, M. Smitkova, and N. Caetano, Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12, 964 (2019).

    Article  CAS  Google Scholar 

  6. S.E. Hosseini and M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850 (2016).

    Article  CAS  Google Scholar 

  7. I.K. Kapdan and F. Kargi, Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569 (2006).

    Article  CAS  Google Scholar 

  8. M. Kaya, NiB loaded acetic acid treated microalgae strain (Spirulina Platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy Sour. Part A 41, 2549 (2019).

    Article  CAS  Google Scholar 

  9. A.A. Ceyhan, S. Edebali, and E. Fangaj, A study on hydrogen generation from NaBH4 solution using Co-loaded resin catalysts. Int. J. Hydrogen Energy 45, 34761 (2020).

    Article  CAS  Google Scholar 

  10. O.V. Netskina, A.M. Ozerova, O.V. Komova, G.V. Odegova, and V.I. Simagina, Hydrogen storage systems based on solid-state NaBH4/CoxB composite: influence of catalyst properties on hydrogen generation rate. Catal. Today 245, 86 (2015).

    Article  CAS  Google Scholar 

  11. N. Patel, R. Fernandes, and A. Miotello, Hydrogen generation by hydrolysis of NaBH4 with efficient Co–P–B catalyst: a kinetic study. J. Power Sour. 188, 411 (2009).

    Article  CAS  Google Scholar 

  12. R. Fernandes, N. Patel, and A. Miotello, Efficient catalytic properties of Co–Ni–P–B catalyst powders for hydrogen generation by hydrolysis of alkaline solution of NaBH4. Int. J. Hydrogen Energy 34, 2893 (2009).

    Article  CAS  Google Scholar 

  13. P. Brack, S.E. Dann, and K.G.U. Wijayantha, Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions. Energy Sci. Eng. 3, 174 (2015).

    Article  CAS  Google Scholar 

  14. R. Pena-Alonso, A. Sicurelli, E. Callone, G. Carturan, and R. Raj, A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. J. Power Sour. 165, 315 (2007).

    Article  CAS  Google Scholar 

  15. D.Y. Xu, X.Y. Lai, W. Guo, X.Y. Zhang, C.S. Wang, and P. Dai, Efficient catalytic properties of SO42-/MxPy (M = Cu Co, Fe) catalysts for hydrogen generation by methanolysis of sodium borohydride. Int. J. Hydrogen Energy 43, 6594 (2018).

    Article  CAS  Google Scholar 

  16. M.W. Abebe, A.F. Baye, and H. Kim, Poly (acrylic acid)/polysaccharides IPN derived metal free catalyst for rapid hydrogen generation via NaBH4 methanolysis. Int. J. Hydrogen Energy 47, 32060 (2022).

    Article  CAS  Google Scholar 

  17. N. Sahiner and S. Demirci, Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 metanalysis. Appl. Catal. B 202, 199 (2017).

    Article  CAS  Google Scholar 

  18. F. Ali, S.B. Khan, and A.M. Asiri, Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. Int. J. Hydrogen Energy 44, 4143 (2019).

    Article  CAS  Google Scholar 

  19. M. Akdemir, T.A. Hansu, A. Caglar, M. Kaya, and H.D. Kivrak, Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage 3, 243 (2021).

    Article  Google Scholar 

  20. D.E. Karakas, M. Akdemir, M. Kaya, S. Horoz, and F. Yasar, The dual functionality of Zn@BP catalyst: methanolysis and supercapatior. J. Mater. Sci.-Mater. Electron. 33, 13484 (2022).

    Article  CAS  Google Scholar 

  21. E.M. Bakhsh, M.S.J. Khan, K. Akhtar, S.B. Khan, and A.M. Asiri, Chitosan hydrogel wrapped bimetallic nanoparticles based efficient catalysts for the catalytic removal of organic pollutants and hydrogen production. Appl. Organomet. Chem. 36, e6741 (2022).

    Article  CAS  Google Scholar 

  22. C.C. Su, M.C. Lu, S.L. Wang, and Y.H. Huang, Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. Rsc Adv. 2, 2073 (2012).

    Article  CAS  Google Scholar 

  23. F.H. Wang, Y.M. Luo, Y.A. Wang, and H. Zhu, The preparation and performance of a novel spherical spider web-like structure Ru-Ni/Ni foam catalyst for NaBH4 methanolysis. Int. J. Hydrogen Energy 44, 13185 (2019).

    Article  CAS  Google Scholar 

  24. K.Q. Yan, Y.H. Li, X. Zhang, X. Yang, N.W. Zhang, J.B. Zheng, B.H. Chen, and K.J. Smith, Effect of preparation method on Ni2P/SiO2 catalytic activity for NaBH4 methanolysis and phenol hydrodeoxygenation. Int. J. Hydrogen Energy 40, 16137 (2015).

    Article  CAS  Google Scholar 

  25. F.H. Wang, Y.A. Wang, Y.J. Zhang, Y.M. Luo, and H. Zhu, Highly dispersed RuCo bimetallic nanoparticles supported on carbon black: enhanced catalytic activity for hydrogen generation from NaBH4 methanolysis. J. Mater. Sci. 53, 6831 (2018).

    Article  CAS  Google Scholar 

  26. F.H. Wang, Y.J. Zhang, Y.A. Wang, Y.M. Luo, Y.N. Chen, and H. Zhu, Co–P nanopartides supported on dandelion-like CNTs-Ni foam composite carrier as a novel catalyst for hydrogen generation from NaBH4 methanolysis. Int. J. Hydrogen Energy 43, 8805 (2018).

    Article  CAS  Google Scholar 

  27. D.Y. Xu, L. Zhao, P. Dai, and S.F. Ji, Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst. J. Nat. Gas Chem. 21, 488 (2012).

    Article  CAS  Google Scholar 

  28. J.D. Ocon, T.N. Tuan, Y.M. Yi, R.L. de Leon, J.K. Lee, and J. Lee, Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe-B nanoparticles. J. Power. Sources 243, 444 (2013).

    Article  CAS  Google Scholar 

  29. O. Sahin, M.S. Izgi, S. Tayboga, and H.C. Kazici, Effect of plasma pretreatment of Co–Cu–B catalyst on hydrogen generation from sodium borohydride methanolysis. React. Kinet. Mech. Catal. 133, 851 (2021).

    Article  CAS  Google Scholar 

  30. N. Sahiner and A.O. Yasar, A new application for colloidal silica particles: natural, environmentally friendly, low-cost, and reusable catalyst material for H2 production from NaBH4 methanolysis. Ind. Eng. Chem. Res. 55, 11245 (2016).

    Article  CAS  Google Scholar 

  31. J. Hannauer, U.B. Demirci, G. Pastor, C. Geantet, J.M. Herrmann, and P. Miele, Hydrogen release through catalyzed methanolysis of solid sodium borohydride. Energy Environ. Sci. 3, 1796 (2010).

    Article  CAS  Google Scholar 

  32. R. Ameta, M. S. Solanki, S. Benjamin, and S. C. Ameta, Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, 2018, 135-175.

  33. A. Caglar, N. Aktas, and H. Kivrak, The role and effect of CdS-based TiO2 photocatalysts enhanced with a wetness impregnation method for efficient photocatalytic glucose electrooxidation. Surf. Interfaces 33, 102250 (2022).

    Article  CAS  Google Scholar 

  34. J.R. Chen, F.X. Qiu, W.Z. Xu, S.S. Cao, and H.J. Zhu, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl. Catal. A 495, 131 (2015).

    Article  CAS  Google Scholar 

  35. R. Thiruvenkatachari, S. Vigneswaran, and I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process. Korean J. Chem. Eng. 25, 64 (2008).

    Article  CAS  Google Scholar 

  36. Z. Xiong, Z. Lei, Y.Z. Li, L.C. Dong, Y.C. Zhao, and J.Y. Zhang, A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. J. Photochem. Photobiol. C 36, 24 (2018).

    Article  CAS  Google Scholar 

  37. P.S. Yap and T.T. Lim, Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Appl. Catal. B 101, 709 (2011).

    Article  CAS  Google Scholar 

  38. T.N.Q. Trang, N.D. Nam, L.T.N. Tu, H.P. Quoc, T.V. Man, V.T.T. Ho, and V.T.H. Thu, In situ spatial charge separation of an Ir@TiO2 Multiphase photosystem toward highly efficient photocatalytic performance of hydrogen production. J. Phys. Chem. C 124, 16961 (2020).

    Article  CAS  Google Scholar 

  39. S. Oros-Ruiz, R. Zanella, and B. Prado, Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25. J. Hazard. Mater. 263, 28 (2013).

    Article  CAS  Google Scholar 

  40. L. Liu, H.W. Bai, J.C. Liu, and D.D. Sun, Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J. Hazard. Mater. 261, 214 (2013).

    Article  CAS  Google Scholar 

  41. N. Todorova, T. Giannakopoulou, S. Karapati, D. Petridis, T. Vaimakis, and C. Trapalis, Composite TiO2/clays materials for photocatalytic NOx oxidation. Appl. Surf. Sci. 319, 113 (2014).

    Article  CAS  Google Scholar 

  42. D. Wang and D. Astruc, The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem. Soc. Rev. 46, 816 (2017).

    Article  CAS  Google Scholar 

  43. G.L. Chiarello, M.V. Dozzi, and E. Selli, TiO2-based materials for photocatalytic hydrogen production. J. Energy Chem. 26, 250 (2017).

    Article  Google Scholar 

  44. N. Su, X.L. Hu, J.B. Zhang, H.H. Huang, J.X. Cheng, J.C. Yu, and C. Ge, Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation. Appl. Surf. Sci. 399, 403 (2017).

    Article  CAS  Google Scholar 

  45. B. Hasa, E. Kalamaras, E.I. Papaioannou, J. Vakros, L. Sygellou, and A. Katsaounis, Effect of TiO2 loading on Pt-Ru catalysts during alcohol electrooxidation. Electrochim. Acta 179, 578 (2015).

    Article  CAS  Google Scholar 

  46. D.J. Guo, X.P. Qiu, L.Q. Chen, and W.T. Zhu, Multi-walled carbon nanotubes modified by sulfated TiO2 - A promising support for Pt catalyst in a direct ethanol fuel cell. Carbon 47, 1680 (2009).

    Article  CAS  Google Scholar 

  47. N. Abdullah, S.K. Kamarudin, L.K. Shyuan, and N.A. Karim, Synthesis and optimization of PtRu/TiO2-CNF anodic catalyst for direct methanol fuel cell. Int. J. Hydrogen Energy 44, 30543 (2019).

    Article  CAS  Google Scholar 

  48. A. Ramadoss and S.J. Kim, Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63, 434 (2013).

    Article  CAS  Google Scholar 

  49. Q. Wang, Z.H. Wen, and J.H. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 16, 2141 (2006).

    Article  CAS  Google Scholar 

  50. D.J. Ahirrao, H.M. Wilson, and N. Jha, TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl. Surf. Sci. 491, 765 (2019).

    Article  CAS  Google Scholar 

  51. K. Rajangam, S. Amuthameena, S. Thangavel, V.S. Sanjanadevi, and B. Balraj, Synthesis and characterisation of Ag incorporated TiO2 nanomaterials for supercapacitor applications. J. Mol. Struct. 1219, 128661 (2020).

    Article  CAS  Google Scholar 

  52. W. Zhang, H.L. He, H.Z. Li, L.L. Duan, L.H. Zu, Y.P. Zhai, W. Li, L.Z. Wang, H.G. Fu, and D.Y. Zhao, Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 11, 2003303 (2021).

    Article  CAS  Google Scholar 

  53. P. Zhang, X.F. Lu, D.Y. Luan, and X.W. Lou, Fabrication of heterostructured Fe2TiO5-TiO2 nanocages with enhanced photoelectrochemical performance for solar energy conversion. Angew. Chem. Int. Ed. 59, 8128 (2020).

    Article  CAS  Google Scholar 

  54. F. Ul Hassan, U. Ahmed, M. Muhyuddin, M. Yasir, M.N. Ashiq, and M.A. Basit, Tactical modification of pseudo-SILAR process for enhanced quantum-dot deposition on TiO2 and ZnO nanoparticles for solar energy applications. Mater. Res. Bull. 120, 110558 (2019).

    Article  Google Scholar 

  55. R. Song, B. Luo, J.F. Geng, D.X. Song, and D.W. Jing, Photothermocatalytic hydrogen evolution over Ni2P/TiO2 for full spectrum solar energy conversion. Ind. Eng. Chem. Res. 57, 7846 (2018).

    Article  CAS  Google Scholar 

  56. K. Arifin, R.M. Yunus, L.J. Minggu, and M.B. Kassim, Improvement of TiO2 nanotubes for photoelectrochemical water splitting: review. Int. J. Hydrogen Energy 46, 4998 (2021).

    Article  CAS  Google Scholar 

  57. G.C. Zuo, Y.T. Wang, W.L. Teo, Q.M. Xian, and Y.L. Zhao, Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl. Catal. B 291, 120126 (2021).

    Article  CAS  Google Scholar 

  58. T. Li and D.Y. Ding, Ni/Si-codoped TiO2 nanostructure photoanode for enhanced photoelectrochemical water splitting. Materials 12, 24 (2019).

    Article  Google Scholar 

  59. Y.Z. Wei, J.Y. Wang, R.B. Yu, J.W. Wan, and D. Wang, Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem. Int. Ed. 58, 1422 (2019).

    Article  CAS  Google Scholar 

  60. H.Y. Wu, M.H. Hon, C.Y. Kuan, and I.C. Leu, Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram. Int. 41, 9527 (2015).

    Article  CAS  Google Scholar 

  61. W.Q. Jiang, D.P. Xiong, S.S. Wu, J.J. Gao, K.D. Wu, W.R. Li, Y.F. Feng, M. He, and Z.Y. Feng, Carbon nanosheets wrapped in SnO2-TiO2 nanoparticles as a high performance anode material for lithium ion batteries. Ceram. Int. 48, 27174 (2022).

    Article  CAS  Google Scholar 

  62. Z. Jiao, R.M. Gao, H.H. Tao, S.A. Yuan, L.Q. Xu, S.S. Xia, and H.J. Zhang, Intergrown SnO2-TiO2@graphene ternary composite as high-performance lithium-ion battery anodes. J. Nanopart. Res. 18, 10 (2016).

    Article  Google Scholar 

  63. Q.H. Tian, Y.B. Chen, F. Zhang, W. Zhang, Z.Y. Sui, and L. Yang, Hierarchical carbon-riveted 2D@OD TiO2 nanosheets@SnO2 nanoparticles composite for a improved lithium-ion battery anode. Appl. Surf. Sci. 511, 145625 (2020).

    Article  CAS  Google Scholar 

  64. M. Pan, H.Z. Li, and J. Wu, Study on catalysed treatment of cooking wastewater by TiO2. Oxid. Commun. 39, 3457 (2016).

    CAS  Google Scholar 

  65. G.Q. Shao, Treatment of dyes wastewater with TiO2 photocatalytic membrane. Adv. Mater. Res. 781, 2124 (2013).

    Article  Google Scholar 

  66. J.J.M. Mesa, L.G.A. Bolivar, H.A.R. Sarmiento, E.G.A. Martinez, C.J. Paez, M.A. Lara, J.A.N. Santos, and M.D.H. Lopez, Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts. Environ. Sci. Pollut. Res. 26, 4171 (2019).

    Article  Google Scholar 

  67. H.U. Farouk, A.A.A. Raman, and W. Daud, TiO2 catalyst deactivation in textile wastewater treatment: current challenges and future advances. J. Ind. Eng. Chem. 33, 11 (2016).

    Article  CAS  Google Scholar 

  68. M. Ahmadi, P. Amiri, and N. Amiri, Combination of TiO2-photocatalytic process and biological oxidation for the treatment of textile wastewater. Korean J. Chem. Eng. 32, 1327 (2015).

    Article  CAS  Google Scholar 

  69. W.Y. Ouyang, M.J. Munoz-Batista, A. Kubacka, R. Luque, and M. Fernandez-Garcia, Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Appl. Catal. B 238, 434 (2018).

    Article  CAS  Google Scholar 

  70. S.E. Salas, B.S. Rosales, and H. de Lase, Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Appl. Catal. B 140, 523 (2013).

    Article  Google Scholar 

  71. F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valades-Pelayo, and H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Appl. Catal. B 211, 337 (2017).

    Article  CAS  Google Scholar 

  72. A.T. Montoya and E.G. Gillan, Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2. Acs Omega 3, 2947 (2018).

    Article  CAS  Google Scholar 

  73. R. Dholam, N. Patel, M. Adami, and A. Miotello, Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energy 34, 5337 (2009).

    Article  CAS  Google Scholar 

  74. G. Sadanandam, K. Lalitha, V.D. Kumari, M.V. Shankar, and M. Subrahmanyam, Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Int. J. Hydrogen Energy 38, 9655 (2013).

    Article  CAS  Google Scholar 

  75. F. Wu, X.Y. Hu, J. Fan, E.Z. Liu, T. Sun, L.M. Kang, W.Q. Hou, C.J. Zhu, and H.C. Liu, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8, 501 (2013).

    Article  CAS  Google Scholar 

  76. S. Kalaiarasi and M. Jose, Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes. Appl. Phys. A 123, 1 (2017).

    Article  CAS  Google Scholar 

  77. J. Spiridonova, A. Katerski, M. Danilson, M. Krichevskaya, M. Krunks, and I. Oja Acik, Effect of the titanium isopropoxide: acetylacetone molar ratio on the photocatalytic activity of TiO2 thin films. Molecules 24, 4326 (2019).

    Article  CAS  Google Scholar 

  78. P.F. Lim, K.H. Leong, L.C. Sim, A. Abd Aziz, and P. Saravanan, Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis. Environ. Sci. Pollut. Res. 26, 3455 (2019).

    Article  CAS  Google Scholar 

  79. W. Xie, R. Li, and Q. Xu, Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  80. Y. Kong, M. Sun, X. Hong, Y. Wang, and A. Umar, The co-modification of MoS2 and CdS on TiO2 nanotube array for improved photoelectrochemical properties. Ionics 27, 4371 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefika Kaya.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S., Saka, C., Caglar, A. et al. Enhanced Photocatalytic Hydrogen Production on Cd-, Te-, Se-, and S-Doped Titanium Dioxide Catalysts. J. Electron. Mater. 52, 8227–8236 (2023). https://doi.org/10.1007/s11664-023-10760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10760-9

Keywords

Navigation