Skip to main content

Advertisement

Log in

Ni/Co Nanoparticles Supported on N-Doped Hollow Carbon Composites as High-Performance Catalysts for Rechargeable Li-O2 Battery

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium-oxygen (Li-O2) batteries have become one of the most promising next-generation energy storage systems due to their high theoretical specific capacity. However, Li-O2 batteries still face the problem of high charging voltage due to incomplete decomposition of discharge products. Here, a nitrogen-doped hollow spherical carbon composite containing Ni/Co nanoparticles was prepared by hydrothermal and pyrolysis strategies, and used as positive catalyst for Li-O2 batteries to adjust the morphology of the discharge product. The porous hollow carbon sphere provides sufficient space for the storage of discharge products. Nitrogen-doped carbon nanospheres can change the local charge density, improve the electron transfer performance, and reduce the resistivity of carbon nanospheres. In addition, the abundant M-Nx active groups enhance the affinity of the positive electrode to the reaction intermediates, thus regulating the morphology of the discharge product Li2O2. Benefiting from the above synergistic advantages, the electrochemical performance of the Li-O2 battery including round-trip efficiency, discharge capacity, and cycling stability is greatly improved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Scrosati and J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195, 2419 (2010).

    CAS  Google Scholar 

  2. Z.G. Li, S.Y. Zhou, X.H. Wu, B.D. Zhang, X.Y. Yu, F. Pei, H.-G. Liao, Y. Qiao, H.S. Zhou, and S.-G. Sun, Restraining shuttle effect in rechargeable batteries by mul tifunctional zeolite coated separator. Adv. Funct. Mater. 33, 2211774 (2023).

    CAS  Google Scholar 

  3. B. Dunn, H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).

    CAS  Google Scholar 

  4. B.D. Zhang, Y.M. Zhang, X.T. Wang, H. Liu, Y.W. Yan, S.Y. Zhou, Y.L. Tang, G.F. Zeng, X.H. Wu, H.-G. Liao, Y.F. Qiu, H. Huang, L.R. Zheng, J.P. Xu, W. Yin, Z.Y. Huang, Y.G. Xiao, Q.S. Xie, D.-L. Peng, C. Li, Y. Qiao, and S.-G. Sun, Role of substitution elements in enhancing the structural stability of Li-rich layered cathodes. J. Am. Chem. Soc. 145, 8700 (2023).

    CAS  Google Scholar 

  5. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19 (2012).

    CAS  Google Scholar 

  6. X.H. Wu, B. Niu, H.T. Zhang, Z.G. Li, H.Y. Luo, Y.L. Tang, X.Y. Yu, L. Huang, X.R. He, X. Wang, Y. Qiao, and S.-G. Sun, Enhancing the reaction kinetics and reversibility of Li-O2 batteries by multifunctional polymer additive. Adv. Energy Mat. 13, 2203089 (2023).

    CAS  Google Scholar 

  7. Z.J. Liang, W.W. Wang, and Y.C. Lu, The path toward practical Li-air batteries. Joule 6, 2458 (2022).

    CAS  Google Scholar 

  8. K.M. Abraham and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996).

    CAS  Google Scholar 

  9. R. Black, B. Adams, and L.F. Nazar, Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater. 2, 801 (2012).

    CAS  Google Scholar 

  10. Z.Q. Peng, S.A. Freunberger, Y.H. Chen, and P.G. Bruce, A reversible and higher-rate Li-O2 battery. Science 337, 563 (2012).

    CAS  Google Scholar 

  11. Z.W. Chang, J.J. Xu, Q.C. Liu, L. Li, and X.B. Zhang, Recent progress on stability enhancement for cathode in rechargeable non-aqueous lithium-oxygen battery. Adv. Energy Mat. 5, 1500633 (2015).

    Google Scholar 

  12. Z.Q. Peng, S.A. Freunberger, L.J. Hardwick, Y.H. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J.M. Tarascon, and P.G. Bruce, Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351 (2011).

    CAS  Google Scholar 

  13. B. Sun, S.Q. Chen, H. Liu, and G.X. Wang, Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries. Adv. Funct. Mater. 25, 4436 (2015).

    CAS  Google Scholar 

  14. G.R. Sun, Q. Zhao, T. Wu, W. Lu, M. Bao, L.Q. Sun, H.M. Xie, and J. Liu, 3D foam-like composites of Mo2C nanorods coated by N-doped carbon: a novel self-standing and binder-free O2 electrode for Li-O2 batteries. ACS Appl. Mater. Interfaces 10, 6327 (2018).

    CAS  Google Scholar 

  15. M.S. Hong, C.Z. Yang, R.A. Wong, A. Nakao, H.C. Choi, and H.R. Byon, Determining the facile routes for oxygen evolution reaction by in situ probing of Li-O2 cells with conformal Li2O2 films. J. Am. Chem. Soc. 140, 6190 (2018).

    CAS  Google Scholar 

  16. S.B. Ma, D.J. Lee, V. Roev, D. Im, and S.-G. Doo, Effect of porosity on electrochemical properties of carbon materials as cathode for lithium-oxygen battery. J. Power Sources 244, 494 (2013).

    CAS  Google Scholar 

  17. Y. Xing, K. Wang, N. Li, D. Su, W.T. Wong, B.L. Huang, and S.J. Guo, Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery. Matter 2, 1494 (2020).

    Google Scholar 

  18. Y.C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, and S.H. Yang, Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750 (2013).

    CAS  Google Scholar 

  19. W.C. Yang, Z.Y. Qian, C.Y. Du, C. Hua, P.J. Zuo, X.Q. Cheng, Y.L. Ma, and G.P. Yin, Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: a promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries. Carbon 118, 139 (2017).

    CAS  Google Scholar 

  20. Z.L. Wang, D. Xu, J.J. Xu, L.L. Zhang, and X.B. Zhang, Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 22, 3699 (2012).

    Google Scholar 

  21. S.C. Ma, Y. Wu, J.W. Wang, Y.L. Zhang, Y.T. Zhang, X.X. Yan, Y. Wei, P. Liu, J.P. Wang, K.L. Jiang, S.S. Fan, Y. Xu, and Z.Q. Peng, Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett. 15, 8084 (2015).

    CAS  Google Scholar 

  22. J. Wang, L.L. Liu, S.L. Chou, H.K. Liu, and J.Z. Wang, A 3D porous nitrogen-doped carbon-nanofiber-supported palladium composite as an efficient catalytic cathode for lithium-oxygen batteries. J. Mater. Chem. A 5, 1462 (2017).

    CAS  Google Scholar 

  23. L.L. Liu, H.P. Guo, Y.Y. Hou, J. Wang, L.J. Fu, J. Chen, H.K. Liu, J.Z. Wang, and Y.P. Wu, A 3D hierarchical porous Co3O4 nanotube network as an efficient cathode for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 5, 14673 (2017).

    CAS  Google Scholar 

  24. H.T. Wu, W. Sun, Y. Wang, F. Wang, J.F. Liu, X.Y. Yue, Z.H. Wang, J.S. Qiao, D.W. Rooney, and K. Sun, Facile synthesis of hierarchical porous three-dimensional free-standing MnCo2O4 cathodes for long-life Li-O2 batteries. ACS Appl. Mater. Interfaces 9, 12355 (2017).

    CAS  Google Scholar 

  25. J.T. Zhang, Z.H. Xia, and L.M. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1, 1500564 (2015).

    Google Scholar 

  26. Y.X. Zhan, P. Shi, R. Zhang, X.Q. Zhang, X. Shen, C.B. Jin, B.Q. Li, and J.Q. Huang, Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes. Adv. Energy Mater. 11, 2101654 (2021).

    CAS  Google Scholar 

  27. X.H. Wu, X.T. Wang, Z.G. Liu, L.B. Chen, S.Y. Zhou, H.T. Zhang, Y. Qiao, H.J. Yue, L. Huang, and S.-G. Sun, Stabilizing Li-O2 batteries with multifunctional fluorinated graphene. Nano Lett. 22, 4985 (2022).

    CAS  Google Scholar 

  28. F.J. Li, T. Zhang, and H.S. Zhou, Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes. Energy Environ. Sci. 6, 1125 (2013).

    CAS  Google Scholar 

  29. X.D. Lin, R.M. Yuan, S.R. Cai, Y.H. Jiang, J. Lei, S.G. Liu, Q.H. Wu, H.G. Liao, M.S. Zheng, and Q.F. Dong, An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium-oxygen batteries. Adv. Energy Mater. 8, 1800089 (2018).

    Google Scholar 

  30. Y. Jiao, Y. Zheng, M. Jaroniec, and S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394 (2014).

    CAS  Google Scholar 

  31. K. Sheng, Q.F. Yi, A.L. Chen, Y.B. Wang, Y.H. Yan, H.D. Nie, and X.L. Zhou, CoNi nanoparticles supported on N-doped bifunctional hollow carbon composites as high-performance ORR/OER catalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 13, 45394 (2021).

    CAS  Google Scholar 

  32. M.L. Wang, Y. Yao, Z.W. Tang, T. Zhao, F. Wu, Y.F. Yang, and Q.F. Huang, Self-nitrogen-doped carbon from plant waste as an oxygen electrode material with exceptional capacity and cycling stability for lithium-oxygen batteries. ACS Appl. Mater. Interfaces 10, 32212 (2018).

    CAS  Google Scholar 

  33. S. Wu, D. Wu, D.W. Zhang, W.H. Liu, H. Luo, J.B. He, Q.C. Yang, Z.W. Li, and R.P. Liu, Boosting the activity and stability with dual-metal-N couplings for Li-O2 battery. Energy Environ. Mater. 5, 918 (2022).

    CAS  Google Scholar 

  34. W.R. Dai, Y. Liu, M. Wang, M. Lin, X. Lian, Y.N. Luo, J.L. Yang, and W. Chen, Monodispersed ruthenium nanoparticles on nitrogen-doped reduced graphene oxide for an efficient lithium-oxygen battery. ACS Appl. Mater. Interfaces 13, 19915 (2021).

    CAS  Google Scholar 

  35. P. Wang, Y.Y. Ren, R.T. Wang, P. Zhang, M.J. Ding, C.X. Li, D.Y. Zhao, Z. Qian, Z.W. Zhang, L.Y. Zhang, and L.W. Yin, Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 11, 1576 (2020).

    CAS  Google Scholar 

  36. L.F. Li, B.L. Chen, Z.Y. Zhuang, J. Nie, and G.P. Ma, Core-double shell templated Fe/Co anchored carbon nanospheres for oxygen reduction. Chem. Eng. J. 399, 125647 (2020).

    CAS  Google Scholar 

  37. J. Wang, Z. Wu, L. Han, R. Lin, W. Xiao, C. Xuan, H.L. Xin, and D. Wang, Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4, 5678 (2016).

    CAS  Google Scholar 

  38. J.-K. Sun and Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7, 2071 (2014).

    CAS  Google Scholar 

  39. H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).

    CAS  Google Scholar 

  40. X.D. Duan, S.S. Ren, N. Pan, M.D. Zhang, and H.G. Zheng, MOF-derived Fe, Co@N-C bifunctional oxygen electrocatalysts for Zn-air batteries. J. Mater. Chem. A 8, 9355 (2020).

    CAS  Google Scholar 

  41. C.C. Xiang, W.J. Sheng, P.F. Zhang, S.J. Zhang, J.T. Li, Y. Zhou, L. Huang, and S.G. Sun, RuO2 nanoparticles supported on Ni and N co-doped carbon nanotubes as an efficient bifunctional electrocatalyst of lithium-oxygen battery. Sci. China Mater. 64, 2379 (2021).

    Google Scholar 

  42. G. Li, Q.F. Yi, X.K. Yang, Y. Chen, X.L. Zhou, and G. Xie, Ni-Co-N doped honeycomb carbon nano-composites as cathodic catalysts of membrane-less direct alcohol fuel cell. Carbon 140, 557 (2018).

    CAS  Google Scholar 

  43. M.M. Storm, M. Overgaard, R. Younesi, N.E.A. Reeler, T. Vosch, U.G. Nielsen, K. Edstrom, and P. Norby, Reduced graphene oxide for Li-air batteries: the effect of oxidation time and reduction conditions for graphene oxide. Carbon 85, 233 (2015).

    CAS  Google Scholar 

  44. M.G. Wu, Y.Q. Wang, Z.X. Wei, L. Wang, M. Zhuo, J.T. Zhang, X.P. Han, and J.M. Ma, Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J. Mater. Chem. A 6, 10918 (2018).

    CAS  Google Scholar 

  45. N. Luo, G.-J. Ji, H.-F. Wang, F. Li, Q.-C. Liu, and J.-J. Xu, Process for a free-standing and stable all-metal structure for symmetrical lithium-oxygen batteries. ACS Nano 14, 3281 (2020).

    CAS  Google Scholar 

  46. H.F. Wang, X.X. Wang, M.L. Li, L.J. Zheng, D.H. Guan, X.L. Huang, J.J. Xu, and J.H. Yu, Porous materials applied in nonaqueous Li-O2 batteries: status and perspectives. Adv. Mater. 32, 2002559 (2020).

    CAS  Google Scholar 

  47. J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, and K.M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33, 1641 (1995).

    CAS  Google Scholar 

  48. J. Zhang, F. Liu, J.P. Cheng, and X.B. Zhang, Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl. Mater. Interfaces 7, 17630 (2015).

    CAS  Google Scholar 

  49. T. He, D.R. Chen, X.L. Jiao, Y.L. Wang, and Y.Z. Duan, Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mat 17, 4023 (2005).

    CAS  Google Scholar 

  50. X.F. Lu, D.J. Wu, R.Z. Li, Q. Li, S.H. Ye, Y.X. Tong, and G.R. Li, Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2, 4706 (2014).

    CAS  Google Scholar 

  51. L. Johnson, C.M. Li, Z. Liu, Y.H. Chen, S.A. Freunberger, P.C. Ashok, B.B. Praveen, K. Dholakia, J.-M. Tarascon, and P.G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 6, 1091 (2014).

    CAS  Google Scholar 

  52. L.T. Qu, Y. Liu, J.-B. Baek, and L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321 (2010).

    CAS  Google Scholar 

  53. J.T. Zhang, Z.H. Zhao, Z.H. Xia, and L.M. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444 (2015).

    CAS  Google Scholar 

  54. M.F. Chen, Q. Lu, S.X. Jiang, C. Huang, X.Y. Wang, B. Wu, K.X. Xiang, and Y.T. Wu, MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chem. Eng. J. 335, 831 (2018).

    CAS  Google Scholar 

  55. J.J. Xu, Z.L. Wang, D. Xu, L.L. Zhang, and X.B. Zhang, Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013).

    Google Scholar 

  56. W. Liu, Y. Shen, Y. Yu, X. Lu, W. Zhang, Z.M. Huang, J.T. Meng, Y.H. Huang, and Z.P. Guo, Intrinsically optimizing charge transfer via tuning charge/discharge mode for lithium-oxygen batteries. Small 15, 19 (2019).

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Science Foundation of China (Grant Nos. 21170055 and 22271259), and the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianshe Wang or Qingchao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1360 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Wang, L., Wang, J. et al. Ni/Co Nanoparticles Supported on N-Doped Hollow Carbon Composites as High-Performance Catalysts for Rechargeable Li-O2 Battery. J. Electron. Mater. 52, 6613–6624 (2023). https://doi.org/10.1007/s11664-023-10599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10599-0

Keywords

Navigation