Skip to main content
Log in

Role of Main Group Nonmetal Dopants on the Electronic Properties of the TcS2 Monolayer Revealed by Density Functional Theory

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic properties of n- and p-type semiconductors using nonmetals (H, B, C, N, O, Si, P, Se, F, Cl, Br, and I) to substitute sulfur in the TcS2 monolayer were investigated using first-principles methods based on the density functional theory. The H-, B-, C-, N-, Si-, and P-doped systems were p-type, whereas the F-doped systems were n-type semiconductors. Numerical results showed that these nonmetals induced magnetic properties through the dopant p orbital and neighboring Tc atom d orbitals. H-, B-, N-, P-, and F-doped systems exhibited semiconducting magnetic nanomaterial features, whereas Cl-, Br-, and I-doped systems exhibited half-metallic magnetic features. The formation energy of the C-doped system was the lowest followed by the O-doped system, compared to that of the other examined systems. Under Tc-rich growth conditions, the preparation of nonmetal-doped TcS2 was facile and stable because of its negative impurity formation energy. A more significant change was observed at the band edges of the doped systems compared to the pristine TcS2 monolayer. These results provided fundamental insights into the doped TcS2 monolayer for application as photocatalysts and spintronic, optoelectronic, and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science (80-.) 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, and M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102 (2014).

    Article  CAS  Google Scholar 

  3. N. Maity, R. Ghosh, and A.K. Nandi, Optoelectronic properties of self-assembled nanostructures of polymer functionalized polythiophene and graphene. Langmuir 34, 7585 (2018).

    Article  CAS  Google Scholar 

  4. C.N.M. Ouma, S. Singh, K.O. Obodo, G.O. Amolo, and A.H. Romero, Controlling the magnetic and optical responses of a MoS2 monolayer by lanthanide substitutional doping: a first-principles study. Phys. Chem. Chem. Phys. 19, 25555 (2017).

    Article  CAS  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, P. Article, A.K. Geim, and K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  6. X. Niu, Y. Li, H. Shu, X. Yao, and J. Wang, Efficient carrier separation in graphitic zinc oxide and blue phosphorus van der Waals heterostructure. J. Phys. Chem. C 121, 3648 (2017).

    Article  CAS  Google Scholar 

  7. B.J. Wang, X.H. Li, R. Zhao, X.L. Cai, W.Y. Yu, W. Bin Li, Z.S. Liu, L.W. Zhang, and S.H. Ke, Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures. J. Mater. Chem. A 6, 8923 (2018).

    Article  CAS  Google Scholar 

  8. K. Ren, C. Ren, Y. Luo, Y. Xu, J. Yu, W. Tang, and M. Sun, Using van der Waals heterostructures based on two-dimensional blue phosphorus and XC (X = Ge, Si) for water-splitting photocatalysis: a first-principles study. Phys. Chem. Chem. Phys. 21, 9949 (2019).

    Article  CAS  Google Scholar 

  9. X. Gao, Y. Shen, Y. Ma, S. Wu, and Z. Zhou, Investigation on photocatalytic mechanism of graphitic SiC (g-SiC)/MoS2 van der Waals heterostructured photocatalysts for overall water splitting. Phys. Chem. Chem. Phys. 21, 15372 (2019).

    Article  CAS  Google Scholar 

  10. M. Idrees, M. Fawad, M. Bilal, Y. Saeed, C. Nguyen, and B. Amin, Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study. RSC Adv. 10, 25801 (2020).

    Article  CAS  Google Scholar 

  11. X. Mu, J. Wang, and M. Sun, Two-dimensional black phosphorus: physical properties and applications. Mater. Today Phys. 8, 92 (2019).

    Article  Google Scholar 

  12. S.J. Hossaini, R. Ghimire, and V. Apalkov, Ultrafast nonlinear absorption of TMDC quantum dots. Phys. E Low-Dimens. Syst. Nanostruct. 142, 115239 (2022).

    Article  CAS  Google Scholar 

  13. B. Liu, W. Zhao, Z. Ding, I. Verzhbitskiy, L. Li, J. Lu, J. Chen, G. Eda, and K.P. Loh, Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many-body effects. Adv. Mater. 28, 6457 (2016).

    Article  CAS  Google Scholar 

  14. S.J. Ray, First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications. Sens. Actuators B Chem. 222, 492 (2016).

    Article  CAS  Google Scholar 

  15. J.D. Cain, E.D. Hanson, F. Shi, and V.P. Dravid, Emerging opportunities in the two-dimensional chalcogenide systems and architecture. Curr. Opin. Solid State Mater. Sci. 20, 374 (2016).

    Article  CAS  Google Scholar 

  16. A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, and G. Seifert, New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115, 24586 (2011).

    Article  CAS  Google Scholar 

  17. Z.Y. Zhu, Y.C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  Google Scholar 

  18. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788 (2012).

    Article  CAS  Google Scholar 

  19. Y. Du, A.T. Neal, H. Zhou, and P.D. Ye, Transport studies in 2D transition metal dichalcogenides and black phosphorus. J. Phys. Condens. Matter 28, 263002 (2016).

    Article  Google Scholar 

  20. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2012).

    Article  CAS  Google Scholar 

  21. Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768 (2011).

    Article  CAS  Google Scholar 

  22. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012).

    Article  CAS  Google Scholar 

  23. K.F. Mak, K. He, J. Shan, and T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494 (2012).

    Article  CAS  Google Scholar 

  24. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science (80-.) 347, 1246501 (2015).

    Article  Google Scholar 

  25. K.O. Obodo, C.N.M. Ouma, J.T. Obodo, and M. Braun, Influence of transition metal doping on the electronic and optical properties of ReS2 and ReSe2 monolayers. Phys. Chem. Chem. Phys. 19, 19050 (2017).

    Article  CAS  Google Scholar 

  26. C.N.M. Ouma, K.O. Obodo, C. Parlak, and G.O. Amolo, Effect of 3d transition metal substitutional dopants and adatoms on mono layer TcS2 ab initio insights. Phys. E Low-Dimens. Syst. Nanostruct. 123, 114165 (2020).

    Article  CAS  Google Scholar 

  27. Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, and X. Xu, Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se). J. Phys. Chem. C 121, 23744 (2017).

    Article  CAS  Google Scholar 

  28. Y. Jiao, L. Zhou, F. Ma, G. Gao, L. Kou, J. Bell, S. Sanvito, and A. Du, Predicting single-layer technetium dichalcogenides (TcX2, X = S, Se) with promising applications in photovoltaics and photocatalysis. ACS Appl. Mater. Interfaces 8, 5385 (2016).

    Article  CAS  Google Scholar 

  29. D. Wolverson, and L.S. Hart, Lattice dynamics of the rhenium and technetium dichalcogenides. Nanoscale Res. Lett. 11, 9 (2016).

    Article  Google Scholar 

  30. M. Luo, H.H. Yin, and Y.H. Shen, Tunable magnetic coupling of BN nanosheets with different nonmetal dopants: a first-principles study. Optik (Stuttg) 156, 797 (2018).

    Article  CAS  Google Scholar 

  31. J. Berry, S. Ristić, S. Zhou, J. Park, and D.J. Srolovitz, The MoSeS dynamic omnigami paradigm for smart shape and composition programmable 2D materials. Nat. Commun. 10, 5210 (2019).

    Article  Google Scholar 

  32. H. Fawrin, L.A. Marlina, A.S. Hutama, and W. Trisunaryanti, Investigations of the influence of non-metal dopants on the electronic and photocatalytic properties of ZrTiO4 by density functional theory calculations. Comput. Condens. Matter 29, e00607 (2021).

    Article  Google Scholar 

  33. P. Liu, J. Zhu, J. Zhang, P. Xi, K. Tao, D. Gao, and D. Xue, P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2, 745 (2017).

    Article  CAS  Google Scholar 

  34. D. Gao, B. Xia, C. Zhu, Y. Du, P. Xi, D. Xue, J. Ding, and J. Wang, Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J. Mater. Chem. A 6, 510 (2018).

    Article  CAS  Google Scholar 

  35. W. Xiao, P. Liu, J. Zhang, W. Song, Y.P. Feng, D. Gao, and J. Ding, Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv. Energy Mater. 7, 1602086 (2017).

    Article  Google Scholar 

  36. S.S. Chee, H. Jang, K. Lee, and M.H. Ham, Substitutional fluorine doping of large-area molybdenum disulfide monolayer films for flexible inverter device arrays. ACS Appl. Mater. Interfaces 12, 31804 (2020).

    Article  CAS  Google Scholar 

  37. S. Lu, C. Li, H.H. Li, Y.F. Zhao, Y.Y. Gong, L.Y. Niu, X.J. Liu, and T. Wang, The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g–C3N4 by first-principles study. Appl. Surf. Sci. 392, 966 (2017).

    Article  CAS  Google Scholar 

  38. Y. Luo, S. Zhang, H. Pan, S. Xiao, Z. Guo, L. Tang, U. Khan, B.F. Ding, M. Li, Z. Cai, Y. Zhao, W. Lv, Q. Feng, X. Zou, J. Lin, H.M. Cheng, and B. Liu, Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 14, 767 (2020).

    Article  CAS  Google Scholar 

  39. M. Rajapakse, B. Karki, U.O. Abu, S. Pishgar, M.R.K. Musa, S.M.S. Riyadh, M. Yu, G. Sumanasekera, and J.B. Jasinski, Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Mater. Appl. 5, 30 (2021).

    Article  CAS  Google Scholar 

  40. D. Rhodes, S.H. Chae, R. Ribeiro-Palau, and J. Hone, Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541 (2019).

    Article  CAS  Google Scholar 

  41. Z. Lin, B.R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M.A. Pimenta, and M. Terrones, Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, 022002 (2016).

    Article  Google Scholar 

  42. Y. Zhao, W. Wang, C. Li, and L. He, First-principles study of nonmetal doped monolayer MoSe2 for tunable electronic and photocatalytic properties. Sci. Rep. 7, 17088 (2017).

    Article  Google Scholar 

  43. M.M. Fadlallah, Magnetic, electronic, optical, and photocatalytic properties of nonmetal- and halogen-doped anatase TiO2 nanotubes. Phys. E Low-Dimens. Syst. Nanostruct. 89, 50 (2017).

    Article  CAS  Google Scholar 

  44. S.A. Ansari, M.M. Khan, M.O. Ansari, and M.H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 40, 3000 (2016).

    Article  CAS  Google Scholar 

  45. Y. Park, S.-H. Kang, and W. Choi, Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys. Chem. Chem. Phys. 13, 9425 (2011).

    Article  CAS  Google Scholar 

  46. Y. Zhao, J. Ning, X. Hu, J. Tu, W. Zou, X. Ruan, Y. Li, Y. Xu, and L. He, Adjustable electronic, optical and photocatalytic properties of black phosphorene by nonmetal doping. Appl. Surf. Sci. 505, 144488 (2020).

    Article  CAS  Google Scholar 

  47. G. Dong, P. Qiu, F. Meng, Y. Wang, B. He, Y. Yu, X. Liu, and Z. Li, Facile synthesis of sulfur-doped polymeric carbon nitride/MoS2 face-to-face heterojunction for highly efficient photocatalytic interfacial charge separation. Chem. Eng. J. 384, 123330 (2020).

    Article  CAS  Google Scholar 

  48. W. Kohn, and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  49. P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  50. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  51. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  52. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  53. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  54. C.N.M. Ouma, K.O. Obodo, M. Braun, G.O. Amolo, and D. Bessarabov, Insights on hydrogen evolution reaction in transition metal doped monolayer TcS2 from density functional theory calculations. Appl. Surf. Sci. 470, 107 (2019).

    Article  CAS  Google Scholar 

  55. I. Timrov, N. Marzari, and M. Cococcioni, Hubbard parameters from density-functional perturbation theory. Phys. Rev. B 98, 085127 (2018).

    Article  Google Scholar 

  56. I. Timrov, N. Marzari, and M. Cococcioni, Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations. Phys. Rev. B 103, 45141 (2021).

    Article  CAS  Google Scholar 

  57. A. Tiwari, J. Palepu, A. Choudhury, S. Bhattacharya, and S. Kanungo, Theoretical analysis of the NH3, NO, and NO2 adsorption on boron-nitrogen and boron-phosphorous co-doped monolayer graphene—a comparative study. FlatChem 34, 100392 (2022).

    Article  CAS  Google Scholar 

  58. S. Ullah, A. Hussain, W.A. Syed, M.A. Saqlain, I. Ahmad, O. Leenaerts, and A. Karim, Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study. RSC Adv. 5, 55762 (2015).

    Article  CAS  Google Scholar 

  59. W. Purwitasari, R.A.B. Villaos, I.M.R. Verzola, A. Sufyan, Z. Huang, C. Hsu, and F. Chuang, High thermoelectric performance in 2D technetium dichalcogenides TcX2 (X = S, Se, or Te). ACS Appl. Energy Mater. 5, 8650 (2022).

    Article  CAS  Google Scholar 

  60. H.J. Lamfers, A. Meetsma, G.A. Wiegers, and J.L. De Boer, The crystal structure of some rhenium and technetium dichalcogenides. J. Alloys Compd. 241, 34 (1996).

    Article  CAS  Google Scholar 

  61. P. Sharma, and G.C. Kaphle, Electronic and magnetic properties of half metallic Heusler alloy Co2MnSi: a first-principles study. J. Nepal Phys. Soc. 4, 60 (2017).

    Article  Google Scholar 

  62. Y.C. Cheng, Z.Y. Zhu, W.B. Mi, Z.B. Guo, and U. Schwingenschlögl, Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys. Rev. B 87, 100401 (2013).

    Article  Google Scholar 

  63. J.C. Wildervanck, and F. Jellinek, The dichalcogenides of technetium and rhenium. J. Less-Common Metals 24, 73 (1971).

    Article  CAS  Google Scholar 

  64. C.-W. Wu, and D.-X. Yao, Robust p-orbital half-metallicity and high Curie-temperature in the hole-doped anisotropic TcX2 (X = S, Se) nanosheets. J. Magn. Magn. Mater. 478, 68 (2019).

    Article  CAS  Google Scholar 

  65. B.G. Janesko, T.M. Henderson, and G.E. Scuseria, Screened hybrid density functionals for solid-state chemistry and physics. Phys. Chem. Chem. Phys. 11, 443 (2009).

    Article  CAS  Google Scholar 

  66. J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  67. M. Barhoumi, and M. Said, Electronic and vibrational properties of TcS2 and TcS2/Stanene heterobilayer using density functional theory. Phys. E Low-Dimens. Syst. Nanostruct. 124, 114380 (2020).

    Article  CAS  Google Scholar 

  68. J. Heyd, G.E. Scuseria, and M. Ernzerhof, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  69. L. Zhang, J. Niu, M. Li, and Z. Xia, Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells. J. Phys. Chem. C 118, 3545 (2014).

    Article  CAS  Google Scholar 

  70. C. Tang, and Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29, 1604103 (2017).

    Article  Google Scholar 

  71. H. Li, S. Liu, S. Huang, Q. Zhang, C. Li, X. Liu, J. Meng, and Y. Tian, Metallic impurities induced electronic transport in WSe2: first-principle calculations. Chem. Phys. Lett. 658, 83 (2016).

    Article  CAS  Google Scholar 

  72. K. Dolui, I. Rungger, C. Das Pemmaraju, and S. Sanvito, Possible doping strategies for MoS2 monolayers: an ab initio study. Phys. Rev. B 88, 075420 (2013).

    Article  Google Scholar 

  73. K. Yang, Y. Dai, B. Huang, and M.H. Whangbo, Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem. Mater. 20, 6528 (2008).

    Article  CAS  Google Scholar 

  74. K. Tahara, T. Iwasaki, A. Matsutani, and M. Hatano, Effect of radical fluorination on mono- and bi-layer graphene in Ar/F2 plasma. Appl. Phys. Lett. 163105, 16 (2013).

    Google Scholar 

  75. P. Basera, S. Saini, E. Arora, A. Singh, M. Kumar, and S. Bhattacharya, Stability of non-metal dopants to tune the photo-absorption of TiO2 at realistic temperatures and oxygen partial pressures: a hybrid DFT study. Sci. Rep. 9, 11427 (2019).

    Article  Google Scholar 

  76. X. Zhao, X. Zhang, T. Wang, S. Wei, and L. Yang, Effective n-type F-doped MoSe2 monolayers. RSC Adv. 7, 26673 (2017).

    Article  CAS  Google Scholar 

  77. Y.-H. Zhao, G.-P. Zhao, Y. Liu, and B.-G. Liu, Structural stability and half-metallicity of the zinc-blende phase of Al1-xCrxAs: density-functional study. Phys. Rev. B 80, 224417 (2009).

    Article  Google Scholar 

  78. A.-M. Hu, L. Wang, W.-Z. Xiao, G. Xiao, and Q.-Y. Rong, Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer. Comput. Mater. Sci. 107, 72 (2015).

    Article  CAS  Google Scholar 

  79. R. Gholizadeh, and Y.X. Yu, Work functions of pristine and heteroatom-doped graphenes under different external electric fields: an ab initio DFT study. J. Phys. Chem. C 118, 28274 (2014).

    Article  CAS  Google Scholar 

  80. Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications. Nanoscale 10, 3547 (2018).

    Article  CAS  Google Scholar 

  81. C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, and K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

Widya acknowledges LPDP (Lembaga Pengelola Dana Pendidikan), Ministry of Finance, the Republic of Indonesia, for the Postgraduate Indonesian Education Scholarship Program. A.S.H. acknowledges the Rekognisi Tugas Akhir (RTA) grant from the Directorate of Research, Universitas Gadjah Mada, Grant Nr: 3550/UN1.P.III/Dit-Lit/PT.01.05/2022. The calculations were partly performed at Mahameru High-Performance Computing, National Research and Innovation Agency (BRIN). The work is a part of the SymBaHCat (Systematic Materials Search Basis for Homogeneous and Heterogeneous Catalysts) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aulia Sukma Hutama.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 134 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widya, Marlina, L.A., Hutama, A.S. et al. Role of Main Group Nonmetal Dopants on the Electronic Properties of the TcS2 Monolayer Revealed by Density Functional Theory. J. Electron. Mater. 52, 5931–5945 (2023). https://doi.org/10.1007/s11664-023-10513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10513-8

Keywords

Navigation