Skip to main content
Log in

One-Pot Construction of Porous WO3/g-C3N4 Nanotubes of Photocatalyst for Fast and Boosted Photodegradation of Rhodamine B and Tetracycline

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

WO3/C3N4 porous nanotubes (WO3/CNNT) with direct Z-scheme heterojunction have been developed through an effortless one-pot calcination self-assembly strategy. The synthesized WO3/CNNT heterojunction structure is different from conventional bulk g-C3N4 according to field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) spectra analysis, and has a better performance in photocatalytic degradation of pollutants. It is under a unique structure with an elevated interfacial area and high dispersion active sites, which can facilitate the degradation of some dye pollutants and antibiotics by heterojunctions, higher than that of bulk g-C3N4 and hollow g-C3N4 nanotubes. The photocatalytic experimental results indicated the optimum photocatalyst of the 2% WO3/CNNT sample with a BET surface area of 108.8 m2/g, which can rapidly remove Rhodamine B (RhB) and tetracycline (TC) up to 97.4% and 87.4%, respectively, under visible-light irradiation, which was about 3.4 and 83.8 times higher than that of individual CNNT and WO3 for RhB degradation. Additionally, the degradation of TC was around 1.1 and 14.3 times superior to that of individual CNNT and WO3. Furthermore, the porous WO3/CNNT heterojunction turned out to be stable and reusable after four cycles of experiments. Reactive free radical trapping experiments confirmed that holes (h+) and superoxide (·O2) radicals are the most dominant species during photodegradation. Finally, a possible Z-scheme catalytic mechanism is proposed. In this work, some new insights are provided to design novel Z-scheme g-C3N4-based heterojunction photocatalysts with a porous nanotube structure and enhanced photocatalytic performance for high-efficiency degradation of dyes and antibiotics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. L.P. Zhang, G.H. Wang, Z.Z. Xiong, H. Tang, and C.J. Jiang, Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. Appl. Surf. Sci. 436, 162 (2018).

    Article  CAS  Google Scholar 

  2. J.F. Dai, X.F. Chen, and H. Yang, Visible light photocatalytic degradation of dyes by a new polyaniline/β-Bi2O3 composite. Inorg. Nano-Met. Chem. 47, 1364 (2017).

    Article  CAS  Google Scholar 

  3. Y.L. Xu, X.F. Shi, R. Hua, R. Zhang, Y.J. Yao, B. Zhao, T. Liu, J.Z. Zheng, and G. Lu, Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Appl. Catal. B Environ. 260, 118142 (2020).

    Article  CAS  Google Scholar 

  4. D. Li and W.D. Shi, Recent developments in visible-light photocatalytic degradation of antibiotics. Chin. J. Catal. 37, 792 (2016).

    Article  CAS  Google Scholar 

  5. Y.P. Feng, G. Chen, Y.J. Zhang, D.G. Li, C. Ling, Q.Y. Wang, and G.G. Liu, Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels. J. Hazard. Mater. 424, 127362 (2022).

    Article  CAS  Google Scholar 

  6. L.N. Fu, J. Li, G.Y. Wang, Y.N. Luan, and W. Dai, Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 217, 112207 (2021).

    Article  CAS  Google Scholar 

  7. S. Lu, L.B. Liu, Q.X. Yang, H. Demissie, R.Y. Jiao, G.Y. An, and D.S. Wang, Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Sci. Total Environ. 786, 147508 (2021).

    Article  CAS  Google Scholar 

  8. L.S. Copete-Pertuz, E.A. Serna-Galvis, J. Placido, R.A. Torres-Palma, and A.L. Mora-Martinez, Coupling chemical oxidation processes and Leptosphaerulina sp. myco-remediation to enhance the removal of recalcitrant organic pollutants in aqueous systems. Sci. Total Environ. 772, 145449 (2021).

    Article  CAS  Google Scholar 

  9. S.K. Sahoo, S. Bhattacharya, and N.K. Sahoo, Photocatalytic degradation of biological recalcitrant pollutants: a green chemistry approach. Biointerface Res. Appl. Chem. 10, 5048 (2020).

    Article  CAS  Google Scholar 

  10. H.P. Zhao, G.F. Li, F. Tian, Q.T. Jia, Y.L. Liu, and R. Chen, g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: theoretical calculation and photodegradation of antibiotics in actual water matrix. Chem. Eng. J. 366, 468 (2019).

    Article  CAS  Google Scholar 

  11. R. Jahanshahi, S. Sobhani, and J.M. Sansano, High performance magnetically separable G-C3N4/γ-Fe2O3/TiO2 nanocomposite with boosted photocatalytic capability towards the Cefixime trihydrate degradation under visible-light. ChemistrySelect 5, 10114 (2020).

    Article  CAS  Google Scholar 

  12. H.P. Li, Z. Wang, Y.X. Lu, S. Liu, X.J. Chen, G.Y. Wei, G. Ye, and J. Chen, Microplasma electrochemistry (MIPEC) methods for improving the photocatalytic performance of g-C3N4 in degradation of RhB. Appl. Surf. Sci. 531, 147307 (2020).

    Article  CAS  Google Scholar 

  13. W. Wang, J.J. Fang, S.F. Shao, M. Lai, and C.H. Lu, Compact and uniform TiO2@g-C3N4 core–shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal. B Environ. 217, 57 (2017).

    Article  CAS  Google Scholar 

  14. M. Alhaddad, R.M. Navarro, M.A. Hussein, and R.M. Mohamed, Bi2O3/g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light. Ceram. Int. 46, 24873 (2020).

    Article  CAS  Google Scholar 

  15. M. Zhou, S.B. Wang, P.J. Yang, Z.S. Luo, R.S. Yuan, A.M. Asiri, M. Wakeel, and X.C. Wang, Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem. Eur. J. 24, 18529 (2018).

    Article  CAS  Google Scholar 

  16. B.C. Zhu, P.F. Xia, W.K. Ho, and J.G. Yu, Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344, 188 (2015).

    Article  CAS  Google Scholar 

  17. Z.A. Hu, J.J. Zhou, Y.J. Ai, L. Liu, L. Qi, R.H. Jiang, H.J. Bao, J.T. Wang, J.S. Hu, H.B. Sun, and Q.L. Liang, Two dimensional Rh/Fe3O4/g-C3N4-N enabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics: a predictable catalyst model with adjoining Rh. J. Catal. 368, 20 (2018).

    Article  CAS  Google Scholar 

  18. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  19. M. Chen, C.S. Guo, S. Hou, J.P. Lv, Y. Zhang, H. Zhang, and J. Xu, A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation. Appl. Catal. B Environ. 266, 118614 (2020).

    Article  CAS  Google Scholar 

  20. A.N. Shafawi, R.A. Mahmud, K. Ahmed Ali, L.K. Putri, N.I. Md Rosli, and A.R. Mohamed, Bi2O3 particles decorated on porous g-C3N4 sheets: enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of reactive black 5 under UV–vis light. J. Photochem. Photobiol. Chem. 389, 112289 (2020).

    Article  CAS  Google Scholar 

  21. W. Wang, J.J. Fang, S.F. Shao, M. Lai, and C.H. Lu, Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal. B Environ. 217, 57 (2017).

    Article  CAS  Google Scholar 

  22. S. Ghafoor, A. Inayat, F. Aftab, H. Duran, K. Kirchhoff, S. Waseem, and S.N. Arshad, TiO2 nanofibers embedded with g-C3N4 nanosheets and decorated with Ag nanoparticles as Z-scheme photocatalysts for environmental remediation. J. Environ. Chem. Eng. 7, 103452 (2019).

    Article  CAS  Google Scholar 

  23. Q.Q. Liu, C.Y. Fan, H. Tang, X.J. Sun, J. Yang, and X.N. Cheng, One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity. Appl. Surf. Sci. 358, 188 (2015).

    Article  CAS  Google Scholar 

  24. S.V.P. Vattikuti, A.K.R. Police, J. Shim, and C. Byon, In situ fabrication of the Bi2O3-V2O5 hybrid embedded with graphitic carbon nitride nanosheets: oxygen vacancies mediated enhanced visible-light-driven photocatalytic degradation of organic pollutants and hydrogen evolution. Appl. Surf. Sci. 447, 740 (2018).

    Article  CAS  Google Scholar 

  25. M.F. Lu, Q.Q. Li, C.L. Zhang, X.X. Fan, L. Li, Y.M. Dong, G.Q. Chen, and H.F. Shi, Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 160, 342 (2020).

    Article  CAS  Google Scholar 

  26. Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.N. Xi, and X.P. Dong, Hydrothermal synthesis of graphitic carbon nitride–Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces 5, 7079 (2013).

    Article  CAS  Google Scholar 

  27. D.B. Wang, X. Yu, Q.G. Feng, X.H. Lin, Y. Huang, X.Q. Huang, X. Li, K. Chen, B.H. Zhao, and Z. Zhang, In-situ growth of β-Bi2O3 nanosheets on g-C3N4 to construct direct Z-scheme heterojunction with enhanced photocatalytic activities. J. Alloys Compd. 859, 157795 (2021).

    Article  CAS  Google Scholar 

  28. Y. Wang, Z.S. Zheng, Y.L. Li, P.W. Jia, and T. Liu, Study on photocatalytic activity of Ag2O modified BiOI/g-C3N4 composite photocatalyst for degradation of RhB. J. Electron. Mater. 51, 5508 (2022).

    Article  CAS  Google Scholar 

  29. Y. Liang, W.C. Xu, J.Z. Fang, Z. Liu, D.D. Chen, T. Pan, Y.T. Yu, and Z.Q. Fang, Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants. Appl. Catal. B Environ. 295, 120279 (2021).

    Article  CAS  Google Scholar 

  30. M.J. Liao, L. Su, Y.C. Deng, S. Xiong, R.D. Tang, Z.B. Wu, C.X. Ding, L.H. Yang, and D.X. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J. Mater. Sci. 56, 14416 (2021).

    Article  CAS  Google Scholar 

  31. M.M. Zhang, Y.Y. Zhu, W.J. Li, F.Z. Wang, H.D. Li, X.T. Liu, W.W. Zhang, and C.J. Ren, Double Z-scheme system of silver bromide@bismuth tungstate/tungsten trioxide ternary heterojunction with enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 509, 18 (2018).

    Article  CAS  Google Scholar 

  32. T.T. Xiao, Z. Tang, Y. Yang, L.Q. Tang, Y. Zhou, and Z.G. Zou, In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl. Catal. B-Environ. 220, 417 (2018).

    Article  CAS  Google Scholar 

  33. T. Pan, D.D. Chen, W.C. Xu, J.Z. Fang, S.X. Wu, Z. Liu, K. Wu, and Z.Q. Fang, Anionic polyacrylamide-assisted construction of thin 2D–2D WO3/g-C3N4 Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J. Hazard. Mater. 393, 122366 (2020).

    Article  CAS  Google Scholar 

  34. Y.Y. Yang, B.Y. Liu, J.Y. Xu, Q.Y. Wang, X. Wang, G.J. Lv, and J.H. Zhou, The synthesis of h-BN-Modified Z-Scheme WO3/g-C3N4 heterojunctions for enhancing visible light photocatalytic degradation of tetracycline pollutants. ACS Omega 7, 1 (2022).

    Google Scholar 

  35. F.L. Wang, Y.F. Wang, Y.P. Feng, Y.Q. Zeng, Z.J. Xie, Q.X. Zhang, Y.H. Su, P. Chen, Y. Liu, K. Yao, W.Y. Lv, and G.G. Liu, Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl. Catal. B Environ. 221, 510 (2018).

    Article  CAS  Google Scholar 

  36. J.S. Zhang, M.W. Zhang, C. Yang, and X.C. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121 (2014).

    Article  CAS  Google Scholar 

  37. J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, and J.G. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 243, 556 (2019).

    Article  CAS  Google Scholar 

  38. G.Z. Sun, Q.Z. Gao, S.N. Tang, R.Z. Ling, Y. Cai, C. Yu, H. Liu, H.J. Gao, X.X. Zhao, and A.R. Wang, Fabrication and enhanced photocatalytic activity of pn heterojunction CoWO4/g-C3N4 photocatalysts for methylene blue degradation. J. Electron. Mater. 51, 3205 (2022).

    Article  CAS  Google Scholar 

  39. Z.S. Wu, X.F. He, Y.T. Xue, X. Yang, Y.F. Li, Q.B. Li, and B. Yu, Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr (VI) from simulated agricultural runoff. Chem. Eng. J. 399, 125747 (2020).

    Article  CAS  Google Scholar 

  40. F. Sun, D. Xu, Y.R. Xie, F. Liu, W.L. Wang, H. Shao, Q.L. Ma, H. Yu, W.S. Yu, and X.T. Dong, Tri-functional aerogel photocatalyst with an S-scheme heterojunction for the efficient removal of dyes and antibiotic and hydrogen generation. J. Colloid Interface Sci. 628, 614 (2022).

    Article  CAS  Google Scholar 

  41. H. Sepahvand, and S. Sharifnia, Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction. Int. J. Hydrogen Energy 44, 23658 (2019).

    Article  CAS  Google Scholar 

  42. S.S. Li, Y.N. Peng, C. Hu, and Z.H. Chen, Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 279, 119401 (2020).

    Article  CAS  Google Scholar 

  43. J. Singh, A. Arora, and S. Basu, Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light. J. Alloys Compd. 808, 151734 (2019).

    Article  CAS  Google Scholar 

  44. X.Y. Zhang, X.Y. Wang, J.Q. Meng, Y.Q. Liu, M. Ren, Y.H. Guo, and Y.X. Yang, Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants. Sep. Purif. Technol. 255, 117693 (2021).

    Article  CAS  Google Scholar 

  45. F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, and L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater. Chem. Eng. J. 395, 125118 (2020).

    Article  CAS  Google Scholar 

  46. L.B. Jiang, X.Z. Yuan, G.M. Zeng, J. Liang, X.H. Chen, H.B. Yu, H. Wang, Z.B. Wu, J. Zhang, and T. Xiong, In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B Environ. 227, 376 (2018).

    Article  CAS  Google Scholar 

  47. C.M. Li, G. Chen, J.X. Sun, Y.J. Feng, J.J. Liu, and H.J. Dong, Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property. Appl. Catal. B Environ. 163, 415 (2015).

    Article  CAS  Google Scholar 

  48. S.E. Guo, Y.Q. Tang, Y. Xie, C.G. Tian, Q.M. Feng, W. Zhou, and B.J. Jiang, P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 218, 664 (2017).

    Article  CAS  Google Scholar 

  49. Y.X. Zhu, Y. Feng, S.L. Chen, M.L. Ding, and J.F. Yao, Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses. J. Mater. Chem. A. 8, 25626 (2020).

    Article  CAS  Google Scholar 

  50. L. Zhou, Y.F. Li, S.J. Yang, M. Zhang, Z.S. Wu, R.X. Jin, and Y. Xing, Preparation of novel 0D/2D Ag2WO4/WO3 Step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chem. Eng. J. 420, 130361 (2021).

    Article  CAS  Google Scholar 

  51. Y.Z. Hong, C.S. Li, B.X. Yin, D. Li, Z.Y. Zhang, B.D. Mao, W.Q. Fan, W. Gu, and W.D. Shi, Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite. Chem. Eng. J. 338, 137 (2018).

    Article  CAS  Google Scholar 

  52. F. Guo, W.L. Shi, W.S. Guan, H. Huang, and Y. Liu, Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 173, 295 (2017).

    Article  CAS  Google Scholar 

  53. G. Fan, Z.Y. Ma, X.B. Li, and L.J. Deng, Coupling of Bi2O3 nanoparticles with g-C3N4 for enhanced photocatalytic degradation of methylene blue. Ceram. Int. 47, 5758 (2021).

    Article  CAS  Google Scholar 

  54. W. Guo, K. Fan, J.J. Zhang, and C.J. Xu, 2D/2D Z-scheme Bi2WO6/porous-g-C3N4 with synergy of adsorption and visible-light-driven photodegradation. Appl. Surf. Sci. 447, 125 (2018).

    Article  CAS  Google Scholar 

  55. W.J. Wang, Q.Y. Niu, G.M. Zeng, C. Zhang, D.L. Huang, B.B. Shao, C.Y. Zhou, Y. Yang, Y.X. Liu, H. Guo, W.P. Xiong, L. Lei, S.Y. Liu, H. Yi, S. Chen, and X. Tang, 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B Environ. 273, 119051 (2020).

    Article  CAS  Google Scholar 

  56. L.B. Jiang, X.Z. Yuan, G.M. Zeng, Z.B. Wu, J. Liang, X.H. Chen, L.J. Leng, H. Wang, and H. Wang, Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B Environ. 221, 715 (2018).

    Article  CAS  Google Scholar 

  57. M. Padervand, B. Rhimi, and C.Y. Wang, One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of Rhodamine B and CO2 reduction. J. Alloys Compd. 852, 156955 (2021).

    Article  CAS  Google Scholar 

  58. C.Y. Xiong, Q.F. Ren, X.Y. Liu, Z. Jin, Y. Ding, H.T. Zhu, J.P. Li, and R.R. Chen, Fenton activity on RhB degradation of magnetic g-C3N4/diatomite/Fe3O4 composites. Appl. Surf. Sci. 543, 148844 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This job is financially supported by the Natural Science Foundation of Anhui Province (Nos. 2008085QE277, 2208085QE137), the Natural Science Foundation of Education Department of Anhui Province (Nos. KJ2021A1018, KJ2021A0940), the National Natural Science Foundation of China (52075144) and the Graduate Innovation and Entrepreneurship Project of Hefei University (No. 21YCXL39).

Author information

Authors and Affiliations

Authors

Contributions

HQ: writing—original draft, data curation; JL: resources; LG: investigation; ZZ: software; JZ: software; ZX: visualization; SW: software; TY: visualization; HL: validation; KH: funding acquisition; ML: methodology; JX: conceptualization, supervision, methodology.

Corresponding author

Correspondence to Jinsong Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Lu, J., Ge, L. et al. One-Pot Construction of Porous WO3/g-C3N4 Nanotubes of Photocatalyst for Fast and Boosted Photodegradation of Rhodamine B and Tetracycline. J. Electron. Mater. 52, 3947–3962 (2023). https://doi.org/10.1007/s11664-023-10387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10387-w

Keywords

Navigation