Skip to main content
Log in

Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu2+ decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na1.0LixCu0.22Fe0.30Mn0.48O2 (x = 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na1.0Cu0.22Fe0.30Mn0.48O2 cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When x = 0.075, the capacity of Na1Li0.075Cu0.22Fe0.30Mn0.48O2 cathode can reach 114.2 mAh g−1 with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).

    Article  CAS  Google Scholar 

  2. J.M. Tarascon, Is lithium the new gold? Nat. Chem. 2, 510 (2010).

    Article  CAS  Google Scholar 

  3. N.N. Van, S. Jafian, and I.M. Hung, Synthesis and electrochemical performance of the Na3V2(PO4)3 cathode for sodium-ion batteries. J. Electron. Mater. 45, 2582 (2016).

    Article  Google Scholar 

  4. K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5, 3544 (2020).

    Article  CAS  Google Scholar 

  5. L. Chen, M. Fiore, J.E. Wang, R. Ruffo, D.K. Kim, and G. Longoni, Readiness level of sodium-ion battery technology: a materials review. Adv. Sustain. Syst. 2, 1700153 (2018).

    Article  Google Scholar 

  6. Y.C. Lyu, Y.C. Liu, Z.E. Yu, N. Su, Y. Liu, W.X. Li, Q. Li, B.K. Guo, and B. Liu, Recent advances in high energy-density cathode materials for sodium-ion batteries. SM&T 21, e00098 (2019).

    CAS  Google Scholar 

  7. Y. Sun, S.H. Guo, and H.S. Zhou, Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 9, 1800212 (2019).

    Article  Google Scholar 

  8. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636 (2014).

    Article  CAS  Google Scholar 

  9. Y.Y. Huang, Y.H. Zheng, X. Li, F. Adams, W. Luo, Y.H. Huang, and L.B. Hu, Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3, 1604 (2018).

    Article  CAS  Google Scholar 

  10. J. Xu, D.H. Lee, and Y.S. Meng, Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct. Mater. Lett. 6, 1330001 (2013).

    Article  Google Scholar 

  11. H. Xu, S.H. Guo, and H.S. Zhou, Review on anionic redox in sodium-ion batteries. J. Mater. Chem. A 7, 23662 (2019).

    Article  CAS  Google Scholar 

  12. X. Xiang, K. Zhang, and J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27, 5343 (2015).

    Article  CAS  Google Scholar 

  13. M.S. Wani, U. Anjum, T.S. Khan, R.S. Dhaka, and M.A. Haider, Understanding Na-Ion transport in NaxV4O10 electrode material for sodium-ion batteries. J. Electron. Mater. 50, 1794 (2021).

    Article  CAS  Google Scholar 

  14. Y.F. Huang, Y.Z. Huang, K.T. Li, W. Chen, X.H. Wu, W.W. Wu, L.L. Huang, and Q. Zhao, Synthesis and electrochemical properties of NixCo3−xO4 with porous hierarchical structures for Na-Ion batteries. J. Electron. Mater. 49, 5508 (2020).

    Article  CAS  Google Scholar 

  15. C. Delmas, C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B + C 99, 81 (1980).

    Article  CAS  Google Scholar 

  16. S.H. Wang, C.I. Sun, N. Wang, and Q.C. Zhang, Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: status, challenges and countermeasures. J. Mater. Chem. A 7, 10138 (2019).

    Article  CAS  Google Scholar 

  17. C.L. Zhao, Y.X. Lu, L.Q. Chen, and Y.S. Hu, Ni-based cathode materials for Na-ion batteries. Nano Res. 12, 2018 (2019).

    Article  CAS  Google Scholar 

  18. Q.N. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, S.L. Chou, and S.X. Dou, Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 15, 1805381 (2019).

    Article  Google Scholar 

  19. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, and S. Komaba, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512 (2012).

    Article  CAS  Google Scholar 

  20. Q.N. Liu, Z. Hu, M.Z. Chen, C. Zou, H.L. Jin, S. Wang, Q.F. Gu, and S.L. Chou, P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J. Mater. Chem. A 7, 9215 (2019).

    Article  CAS  Google Scholar 

  21. D.H. Kim, E. Lee, M. Slater, W.Q. Lu, S. Rood, and C.S. Johnson, Layered Na Ni1/3Fe1/3Mn1/3O2 cathodes for Na-ion battery application. Electrochem. Commun. 18, 66 (2012).

    Article  CAS  Google Scholar 

  22. K.N. Jung, J.Y. Choi, H.S. Shin, H.T. Huu, W.B. Im, and J.W. Lee, Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle stability as a cathode material for sodium-ion batteries. Solid State Sci. 106, 106334 (2020).

    Article  CAS  Google Scholar 

  23. L. Mu, S. Xu, Y. Li, Y.S. Hu, H. Li, L. Chen, and X. Huang, Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 27, 6928 (2015).

    Article  CAS  Google Scholar 

  24. Y.H. Zhu, W.Y. Nie, P.P. Chen, Y.F. Zhou, and Y. Xu, Li-doping stabilized P2-Li0.2Na1.0Mn0.8O2 sodium ion cathode with oxygen redox activity. Int. J. Energy Res. 44, 3253 (2020).

    Article  CAS  Google Scholar 

  25. L.F. Yang, X. Li, J. Liu, S. Xiong, X.T. Ma, P. Liu, J.M. Bai, W.Q. Xu, Y.Z. Tang, Y.Y. Hu, M.L. Liu, and H.L. Chen, Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J. Am. Chem. Soc. 141, 6680 (2019).

    Article  CAS  Google Scholar 

  26. L.F. Yang, X. Li, X.T. Ma, S. Xiong, P. Liu, Y.Z. Tang, S. Cheng, Y.Y. Hu, M.L. Liu, and H.L. Chen, Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: a study on P2-Nax(LiyMn1-y)O2 compounds. J. Power Sources 381, 171 (2018).

    Article  CAS  Google Scholar 

  27. Y.Y. Xie, E. Gabriel, L.L. Fan, I. Hwang, X. Li, H.Y. Zhu, Y. Ren, C.J. Sun, J.L. Pipkin, M. Dustin, M. Li, Z.H. Chen, E. Lee, and H. Xiong, Role of lithium doping in P2-Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries. Chem. Mater. 33, 4445 (2021).

    Article  CAS  Google Scholar 

  28. B.W. Xiao, X. Liu, X. Chen, G.H. Lee, M. Song, X. Yang, F. Omenya, D.M. Reed, V. Sprenkle, Y. Ren, C.J. Sun, W. Yang, K. Amine, X. Li, G. Xu, and X. Li, Uncommon behavior of Li doping suppresses oxygen redox in P2-type manganese-rich sodium cathodes. Adv. Mater. 33, 2107141 (2021).

    Article  CAS  Google Scholar 

  29. G.M. Peng, S.Q. Wu, J.E. Ellis, X.Q. Xu, G. Xu, C.L. Yu, and A. Star, Single-walled carbon nanotubes templated CuO networks for gas sensing. J. Mater. Chem. C 4, 6575 (2016).

    Article  CAS  Google Scholar 

  30. T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441 (2008).

    Article  CAS  Google Scholar 

  31. W.P. Kang, Z.Y. Zhang, P.K. Lee, T.W. Ng, W.Y. Li, Y.B. Tang, W.J. Zhang, C.S. Lee, and W.D.Y. Yu, Copper substituted P2-type Na0.67CuxMn1−xO2: a stable high-power sodium-ion battery cathode. J. Mater. Chem. A 3, 22846 (2015).

    Article  CAS  Google Scholar 

  32. X. Gao, J. Chen, H.Q. Liu, S.Y. Yin, Y. Tian, X.Y. Cao, G.Q. Zou, H.S. Hou, W.F. Wei, L.B. Chen, and X.B. Ji, Copper-substituted NaxMO2 (M = Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation. Chem. Eng. J 406, 126830 (2021).

    Article  CAS  Google Scholar 

  33. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717 (2011).

    Article  CAS  Google Scholar 

  34. J. Li, H. Wei, Y. Peng, L. Geng, L. Zhu, X.Y. Cao, C.S. Liu, and H. Pang, A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. ChemComm 55, 7922 (2019).

    CAS  Google Scholar 

  35. C.S. Liu, Z.H. Zhang, M. Chen, H. Zhao, F.H. Duan, D.M. Chen, M.H. Wang, S. Zhang, and M. Du, Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins. ChemComm 53, 3941 (2017).

    CAS  Google Scholar 

  36. H.W. Nesbitt, and D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 83, 305 (1998).

    Article  CAS  Google Scholar 

  37. J.L. Xu, J.Z. Chen, K. Zhang, N.N. Li, L. Tao, and C.P. Wong, Nax(Cu-Fe-Mn)O2 system as cathode materials for Na-ion batteries. Nano Energy 78, 105142 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yuanliang Yuan and Xin Wang contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (No. 52172184), Sichuan Natural Science Foundation (No. 2022NSFSC0259) and the Fundamental Research Funds for the Central Universities (No. ZYGX2019J024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghuang Wang or Aijun Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Wang, X., Jiang, J. et al. Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries. J. Electron. Mater. 52, 3509–3516 (2023). https://doi.org/10.1007/s11664-023-10344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10344-7

Keywords

Navigation