Skip to main content

Advertisement

Log in

Etching Exfoliated Ti2CTx Nanosheets for Photoelectrochemical Photodetectors with Enhanced Performance and Alkaline Stability

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Because of their unusual electrical and optoelectronic properties, MXene nanosheets have generated considerable interest. Herein, a photoelectrochemical (PEC)-type photodetector based on few-layer MXene (Ti2CTx) nanosheets was fabricated, in which the Ti2CTx was prepared by liquid-phase exfoliation-assisted chemical etching from Ti2AlC. Scanning electron microscopy (SEM) images and Raman spectra were used to confirm the microstructure and morphology of the two-dimensional (2D) Ti2CTx. Photoresponse experiments using a PEC measurement system revealed that the synthesized Ti2CTx nanosheets outperform the original Ti2AlC in photoresponse activity under simulated solar illumination. The high photoresponse performance of the Ti2CTx-based photodetector is attributed to the improved photoelectric performance of Ti2CTx by the liquid-phase exfoliation method. The structure and properties of the few-layer Ti2CTx nanosheets suggest potential applications in photonics and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included in the article.

References

  1. Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2, 035011 (2015).

    Article  Google Scholar 

  2. A.H.C. Neto and K. Novoselov, Two-dimensional crystals: beyond graphene. Mater. Express 1, 10 (2011).

    Article  Google Scholar 

  3. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  4. N.R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, and P.M. Ajayan, Emerging applications of elemental 2D materials. Adv. Mater. 32, e1904302 (2020).

    Article  Google Scholar 

  5. K. Leng, W. Fu, Y. Liu, M. Chhowalla, and K.P. Loh, From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482 (2020).

    Article  CAS  Google Scholar 

  6. C. Liu, L. Wang, J. Qi, and K. Liu, Designed growth of large-size 2D single crystals. Adv. Mater. 32, e2000046 (2020).

    Article  Google Scholar 

  7. H. Liu, R. Fu, X. Su, X. Chen, and B. Wu, MXene structure, properties and application in the field of electromagnetic shielding. Mater. Rep. 13, 13067 (2021).

    Google Scholar 

  8. L. Gao, C. Li, W. Huang, S. Mei, H. Lin, Q. Ou, Y. Zhang, J. Guo, F. Zhang, S. Xu, and H. Zhang, MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703 (2020).

    Article  CAS  Google Scholar 

  9. K. Hantanasirisakul and Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, e1804779 (2018).

    Article  Google Scholar 

  10. B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  11. M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, and M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78 (2014).

    Article  CAS  Google Scholar 

  12. A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, and A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016).

    Article  Google Scholar 

  13. L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.X. Ding, S. Wang, J. Caro, and Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

    Article  Google Scholar 

  14. R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, and K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522 (2018).

    Article  CAS  Google Scholar 

  15. S. Chertopalov and V.N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12, 6109 (2018).

    Article  CAS  Google Scholar 

  16. S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, and H.T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986 (2018).

    Article  CAS  Google Scholar 

  17. E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, and D.J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184 (2017).

    Article  CAS  Google Scholar 

  18. S. Ren, R. Feng, S. Cheng, J. Zeng, X. Gong, and Q. Wang, Recent progress of two-dimensional MXenes in the field of sensing. Mater. Rep. 5, 05075 (2021).

    Google Scholar 

  19. P. Lei and Y. Bao, Research progress of flexible piezoresistive sensor based on MXene. Mater. Rep. 14, 20040214 (2022).

    Google Scholar 

  20. X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, and Y. Gogotsi, Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241 (2019).

    Article  CAS  Google Scholar 

  21. J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, and M.H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72 (2019).

    Article  CAS  Google Scholar 

  22. H. Yu, Y. Wang, Y. Jing, J. Ma, C.F. Du, and Q. Yan, Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 15, e1901503 (2019).

    Article  Google Scholar 

  23. Y. Dong, S.S.K. Mallineni, K. Maleski, H. Behlow, V.N. Mochalin, A.M. Rao, Y. Gogotsi, and R. Podila, Metallic MXenes: a new family of materials for flexible triboelectric nanogenerators. Nano Energy 44, 103 (2018).

    Article  CAS  Google Scholar 

  24. D. Sun, W. Li, and Z. Liu, Two-dimensional nanomaterial MXene and its research advances on applications in lithium-ion batteries. Mater. Rep. 15, 15047 (2021).

    Google Scholar 

  25. X. Chen, Z. Shi, Y. Tian, P. Lin, D. Wu, X. Li, B. Dong, W. Xu, and X. Fang, Two-dimensional Ti3C2 MXene-based nanostructures for emerging optoelectronic applications. Mater. Horiz. 8, 2929 (2021).

    Article  CAS  Google Scholar 

  26. D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin, M.N. Hedhili, A.E. Mansour, E.D. Fabrizio, O.F. Mohammed, and H.N. Alshareef, MXenes for plasmonic photodetection. Adv. Mater. 31, e1807658 (2019).

    Article  Google Scholar 

  27. X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface. Mater. Today Energy 16, 100401 (2020).

    Article  Google Scholar 

  28. X. Li, C. Gao, H. Duan, B. Lu, X. Pan, and E. Xie, Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy 1, 640 (2012).

    Article  Google Scholar 

  29. B. Nie, J.G. Hu, L.B. Luo, C. Xie, L.H. Zeng, P. Lv, F.Z. Li, J.S. Jie, M. Feng, C.Y. Wu, Y.Q. Yu, and S.H. Yu, Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9, 2872 (2013).

    Article  CAS  Google Scholar 

  30. L. Peng, L. Hu, and X. Fang, Energy harvesting for nanostructured self-powered photodetectors. Adv. Funct. Mater. 24, 2591 (2014).

    Article  CAS  Google Scholar 

  31. X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27, 1606834 (2017).

    Article  Google Scholar 

  32. Y. Liu, H. Zeng, Y. Chai, R. Yuan, and H. Liu, Ti3C2/BiVO4 Schottky junction as a signal indicator for ultrasensitive photoelectrochemical detection of VEGF165. Chem. Commun. (Camb). 55, 13729 (2019).

    Article  CAS  Google Scholar 

  33. M. Li, H. Wang, X. Wang, Q. Lu, H. Li, Y. Zhang, and S. Yao, Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose. Biosens. Bioelectron. 142, 111535 (2019).

    Article  CAS  Google Scholar 

  34. B. Akgenç, Two-dimensional Ti2C monolayer (MXene): surface functionalization, induced metal, semiconductor transition. Turk J Phys. 43, 531 (2019).

    Google Scholar 

  35. L. Feng, X.-H. Zha, K. Luo, Q. Huang, J. He, Y. Liu, W. Deng, and S. Du, Structures and mechanical and electronic properties of the Ti2CO2 MXene incorporated with neighboring elements (Sc, V, B and N). J. Electron. Mater. 46, 2460 (2017).

    Article  CAS  Google Scholar 

  36. X.H. Zha, Q. Huang, J. He, H. He, J. Zhai, J.S. Francisco, and S. Du, The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 6, 27971 (2016).

    Article  Google Scholar 

  37. X.H. Zha, J. Zhou, Y. Zhou, Q. Huang, J. He, J.S. Francisco, K. Luo, and S. Du, Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 8, 6110 (2016).

    Article  CAS  Google Scholar 

  38. Y. Ma, Y. Cheng, J. Wang, S. Fu, M. Zhou, Y. Yang, B. Li, X. Zhang, and C.W. Nan, Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat. 4, 12328 (2022).

    Article  Google Scholar 

  39. J. Tang, T.S. Mathis, N. Kurra, A. Sarycheva, X. Xiao, M.N. Hedhili, Q. Jiang, H.N. Alshareef, B. Xu, F. Pan, and Y. Gogotsi, Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew. Chem. Int. Ed. Engl. 58, 17849 (2019).

    Article  CAS  Google Scholar 

  40. H. Huang, X. Ren, Z. Li, H. Wang, Z. Huang, H. Qiao, P. Tang, J. Zhao, W. Liang, Y. Ge, J. Liu, J. Li, X. Qi, and H. Zhang, Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology 29, 235201 (2018).

    Article  Google Scholar 

  41. B. Sun, X. Dong, H. Li, Y. Shang, Y. Zhang, F. Hu, S. Gu, Y. Wu, T. Gao, and G. Zhou, Surface charge engineering for two-dimensional Ti2CTx MXene for highly efficient and selective removal of cationic dye from aqueous solution. Sep. Purif. Technol. 272, 118964 (2021).

    Article  CAS  Google Scholar 

  42. F. Liu, A. Zhou, J. Chen, H. Zhang, J. Cao, L. Wang, and Q. Hu, Preparation and methane adsorption of two-dimensional carbide Ti2C. Adsorption 22, 915 (2016).

    Article  CAS  Google Scholar 

  43. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248 (2011).

    Article  CAS  Google Scholar 

  44. L. Gao, C. Ma, S. Wei, A.V. Kuklin, H. Zhang, and H. Agren, Applications of few-layer Nb2C MXene: narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 15, 954 (2021).

    Article  CAS  Google Scholar 

  45. J. Azadmanjiri, P.K. Roy, L. Děkanovský, J. Regner, and Z. Sofer, Ti3C2Tx MXene anchoring semi-metallic selenium atoms: self-powered photoelectrochemical-type photodetector, hydrogen evolution, and gas-sensing applications. 2D Mater. 9, 045019 (2022).

    Article  Google Scholar 

  46. S. Luo, Z. Wu, J. Zhao, Z. Luo, Q. Qiu, Z. Li, H. Wu, G. Xing, and C. Wu, ZIF-67 derivative decorated MXene for a highly integrated flexible self-powered photodetector. ACS Appl. Mater. Interfaces 14, 19725 (2022).

    Article  CAS  Google Scholar 

  47. Y. Liao, Z. Huang, H. Qiao, Y. Zhou, H. Yang, and X. Qi, Stable and flexible photodetector based on liquid-phase exfoliated titanium disulfide nanosheets. Nanotechnology 33, 485707 (2022).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 21B0128), Provincial Natural Science Foundation of Hunan (No. 2022JJ30553), National Natural Science Foundation of China (No. 12274359), Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010), Suzhou key industrial technology innovation project (SYG201921), and Program of Changjiang Scholars and Innovative Research Team in University (IRT-17R91).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Qiao or Zongyu Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R., Qiao, H., Zhou, Y. et al. Etching Exfoliated Ti2CTx Nanosheets for Photoelectrochemical Photodetectors with Enhanced Performance and Alkaline Stability. J. Electron. Mater. 52, 3029–3037 (2023). https://doi.org/10.1007/s11664-023-10275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10275-3

Keywords

Navigation