Skip to main content
Log in

Numerical Analysis of High-Efficiency CH3NH3PbI3 Perovskite Solar Cell with PEDOT:PSS Hole Transport Material Using SCAPS 1D Simulator

  • Topical Collection: International Conference on Organic Electronics 2022
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The experimental results of a perovskite solar cell with FTO/TiO2/CH3NH3PbI3/PEDOT:PSS/Pt cell architecture fabricated in our research laboratory under ambient conditions are compared with the simulated results obtained using SCAPS-1D. Optimization of the thickness of the perovskite, ETL and HTL, temperature, and the work function of the metal has been carried out to formulate a high-performance perovskite solar cell. The impacts of varying absorber thickness, ETL, temperature, and metal work function exhibit very minimal or no change. However, the device exhibits a high power conversion efficiency (PCE) in HTL thickness variation. The impact of variation in HTL thickness from 10 nm to 500 nm shows the best cell performance in terms of PCE between 10 nm and 50 nm. At 10-nm thickness, Jsc, Voc, FF, and PCE are 35.08 mA/cm2, 0.95 V, 35.08%, and 28.93%, respectively. The cell efficiency decreases with the increase in the thickness of HTL. However, at lower thicknesses, the extraction of the generated carrier is generally low. Therefore, analyzing all the results, we suggest that, to obtain a high power conversion (26.26% at 30 nm and 23.75% at 50 nm), the HTL thickness should effectively be between 30 nm and 50 nm. The structure of the studied solar cell device having such cell characteristics can be considered in the manufacturing workflow for its mass-scale production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M.V. Schilfgaarde, and A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014).

    Article  CAS  Google Scholar 

  2. N. Nuraje and K. Su, Perovskite ferroelectric nanomaterials. Nanoscale 5, 8752 (2013).

    Article  CAS  Google Scholar 

  3. D.B. Mitzi, Synthesis, structure, and properties of organic‐inorganic perovskites and related materials. Prog. Inorg. Chem., 1–121 (1999).

  4. V. Dinnocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5(1), 3586 (2014).

    Article  Google Scholar 

  5. J.S. Manser and P.V. Kamat, Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8(9), 737 (2014).

    Article  CAS  Google Scholar 

  6. W.J. Yin, J.H. Yang, J. Kang, Y. Yan, and S.H. Wei, Halide perovskite materials for solar cells: a theoretical review. J. Matter. Chem. 3, 8926 (2015).

    Article  CAS  Google Scholar 

  7. A. Walsh and G.W. Watson, The origin of the stereochemically active Pb (II) lone pair: DFT calculations on PbO and PbS. J. Solid State Chem. 178(5), 1422 (2005).

    Article  CAS  Google Scholar 

  8. A. Walsh, D.J. Payne, R.G. Egdell, and G.W. Watson, Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455 (2011).

    Article  CAS  Google Scholar 

  9. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344 (2013).

    Article  CAS  Google Scholar 

  10. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).

    Article  CAS  Google Scholar 

  11. Z. Wei, H. Chen, K. Yan, and S. Yang, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. 126, 13455 (2014).

    Article  Google Scholar 

  12. Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao, K. Fu, S.K. Batabyal, J. Zhang, Q. Xiong, and L.H. Wong, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797 (2014).

    Article  CAS  Google Scholar 

  13. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014).

    Article  CAS  Google Scholar 

  14. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).

    Article  CAS  Google Scholar 

  15. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.B. Cheng, and L. Spiccia, A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. Engl. 53, 9898 (2014).

    Article  CAS  Google Scholar 

  16. M. Liu, M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).

    Article  CAS  Google Scholar 

  17. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014).

    Article  CAS  Google Scholar 

  18. M.A. Green, Radiative efficiency of state-of-the-art photovoltaic cells. Photovoltaics 20, 472 (2012).

    Article  CAS  Google Scholar 

  19. U. Rau, B. Blank, T.C.M. Müller, and T. Kirchartz, Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017).

    Article  Google Scholar 

  20. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).

    Article  CAS  Google Scholar 

  21. N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S.I. Seok, J. Lee, and J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682 (2018).

    Article  CAS  Google Scholar 

  22. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H.J. Snaith, V. Dyakonov, and H.J. Bolink, Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2015).

    Article  Google Scholar 

  23. W. Tress, N. Marinova, O. Inganas, M.K. Nazeeruddin, S.M. Zakeeruddin, and M. Graetzel, Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Article  Google Scholar 

  24. J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, and A. Hagfeldt, Promises and challenges of perovskite solar cells. Science 358, 739 (2017).

    Article  CAS  Google Scholar 

  25. J. Yao, T. Kirchartz, M.S. Vezie, M.A. Faist, W. Gong, Z. He, H. Wu, J. Troughton, T. Watson, D. Bryant, and J. Nelson, Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 4(1), 014020 (2015).

    Article  Google Scholar 

  26. K.L. Qiu, O. Luis, and Q. Yabing, Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Mater. Today Energy 7, 169 (2018).

    Article  Google Scholar 

  27. W.J. Yin, J.H. Yang, J. Kang, Y. Yan, and S.H. Wei, Halide perovskite materials for solar cells: a theoretical review. Chem. A 3, 8926 (2015).

    CAS  Google Scholar 

  28. P.K. Singh, R. Singh, V. Singh, S.K. Tomar, B. Bhattacharya, and Z.H. Khan, Effect of crystal and powder of CH3NH3I on the CH3NH3PbI3 based perovskite sensitized solar cell. R. Bull. 89, 292 (2017).

    Article  Google Scholar 

  29. A. Krishna and A.C. Grimsdale, Hole transporting materials for mesoscopic perovskite solar cells–towards a rational design. J. Mater. Chem. A 5, 16446 (2017).

    Article  CAS  Google Scholar 

  30. A. Ehtesham, W.W. Wong, H.Y. Wong, and M. Zaman, Recent advances in fabrication techniques of perovskite solar cells: a review. Am. J. Appl. Sci. 13, 1290 (2016).

    Article  CAS  Google Scholar 

  31. S. Prasanthkumar and L. Giribabu, Recent advances in perovskite-based solar cells. Curr. Sci. 111, 1173 (2016).

    Article  CAS  Google Scholar 

  32. W. Zhang, X. Bi, X. Zhao, Z. Zhao, J. Zhu, S. Dai, L. Yalin, and S. Yang, The effect of skin-depth interfacial defect layer in perovskite solar cell. Organ. Electron. 15, 3445 (2014).

    Article  CAS  Google Scholar 

  33. T.R. Chou, S.H. Chen, Y.T. Chiang, Y.T. Lina, and C.Y. Chao, Highly conductive PEDOT: PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display. J. Mater. Chem. C 3(15), 3760 (2015).

    Article  CAS  Google Scholar 

  34. O.P. Dimitrieva, D.A. Grinkoa, Y.V. Noskovb, N.A. Ogurtsovb, and A.A. Pud, PEDOT: PSS films—effect of organic solvent additives and annealing on the film conductivity. Metals 159, 2237 (2009).

    Google Scholar 

  35. X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, and Z. Xie, Highly conductive PEDOT: PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells. Solar Energy Mater. Solar Cells 144, 143 (2015).

    Article  Google Scholar 

  36. S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, O. Seung-Hwan, Y. Byung-Kwan, T. Leea, and D.-Y. Kim, Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT: PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 19, 9045 (2009).

    Article  CAS  Google Scholar 

  37. L.-C. Chen, J.-C. Chen, C.-C. Chen, and W. Chun-Guey, Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res. Lett. 10, 312 (2015).

    Article  Google Scholar 

  38. Y. Xia, K. Sun, J. Chang, and J. Ouyang, Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. J. Mater. Chem. A 3, 15897 (2015).

    Article  CAS  Google Scholar 

  39. W. Chun-Guey, C.-H. Chiang, Z.-L. Tseng, K.M. Nazeeruddin, A. Hagfeldt, and M. Gratzel, High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725 (2015).

    Article  Google Scholar 

  40. P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, and H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(1), 1 (2013).

    Article  Google Scholar 

  41. M. Srivastava, K. Surana, S. Singh, P.K. Singh, and R.C. Singh, Highly efficient sandwich structured Perovskite solar cell using PEDOT: PSS in room ambient conditions. Mater. Today 34, 675 (2021).

    CAS  Google Scholar 

  42. R. Singh, B. Bhattacharya, H.W. Rhee, and P.K. Singh, Solid gellan gum polymer electrolyte for energy application. Int. J. Hydrog. Energy 40, 9365 (2015).

    Article  CAS  Google Scholar 

  43. Q. Liu, C. Leng, and J. Yuan, Quantifying the nonclassicality of pure dephasing. Mater. Sci. Eng. 452, 022135 (2018).

    Google Scholar 

  44. G. Adam, M. Kaltenbrunner, E.D. Głowacki, D.H. Apaydin, M.S. White, H. Heilbrunner, S. Tombe, P. Stadler, B. Ernecker, C.W. Klampfl, and N.S. Sariciftci, Solution processed perovskite solar cells using highly conductive PEDOT: PSS interfacial layer. Sol. Energy Mater. Sol. Cells 157, 318 (2016).

    Article  CAS  Google Scholar 

  45. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).

    Article  CAS  Google Scholar 

  46. L. Et-taya, T. Ouslimane, and A. Benami, Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 39(1), 012401 (2021).

    Google Scholar 

  47. H. Abdy, A. Aletayeb, M. Bashirpour, Z. Heydari, M. Kolahdouz, E. AslSoleimani, Z. Kolahdouz, and G. Zhang, Synthesis, optical characterization, and simulation of organo-metal halide perovskite materials. Optik 191, 100 (2019).

    Article  CAS  Google Scholar 

  48. S. Sajid, A.M. Elseman, J. Ji, S. Dou, D. Wei, H. Huang, P. Cui, W. Xi, L. Chu, Y. Li, B. Jiang, and M. Li, Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10, 51 (2018).

    Article  Google Scholar 

  49. M. Singh, R. Kumar, and V. Singh, Investigating the impact of layer properties on the performance of p-graphene/CH3NH3PbI3/n-cSi solar cell using numerical modelling. Superlattices Microstruct. 140, 106468 (2020).

    Article  Google Scholar 

  50. M. Mehrabian and S. Dalir, 11.73% efficient perovskite heterojunction solar cell simulated by SILVACO ATLAS software. Optik 139, 44 (2017).

    Article  CAS  Google Scholar 

  51. L. Et-taya, T. Ouslimane, and A. Benami, Numerical analysis of earth-abundant Cu2ZnSn (SxSe1-x)4 solar cells based on spectroscopic ellipsometry results by using SCAPS-1D. Sol. Energy 201, 827 (2020).

    Article  CAS  Google Scholar 

  52. S. Rai, B.K. Pandey, and D.K. Dwivedi, Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation. Opt. Mater. 100, 109631 (2020).

    Article  CAS  Google Scholar 

  53. X. Wang, T. Zhang, Y. Lou, and Y. Zhao, All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front. 3, 365 (2019).

    Article  CAS  Google Scholar 

  54. W. Ming, H. Shi, and M.-H. Du, Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J. Mater. Chem. A 4, 13852 (2016).

    Article  CAS  Google Scholar 

  55. D. Liu, Q. Li, H. Jing, and K. Wu, Pressure-induced effects in the inorganic halide perovskite CsGeI3. RSC Adv. 9, 3279 (2019).

    Article  CAS  Google Scholar 

  56. U.-G. Jong, C.-J. Yu, Y.-H. Kye, Y.-G. Choe, W. Hao, and S. Li, First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites. Inorg. Chem. 58, 4134 (2019).

    Article  CAS  Google Scholar 

  57. K.A. Montiel, C. Yang, C.H. Andreasen, M.S. Gottlieb, M.R. Pfefferkorn, L.G. Wilson, J.L.W. Carter, and I.T. Martin, Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via SCAPS simulation. J. Vac. Sci. Tech. B, Nanotech. Microelectron. Mater. Process. Measure. Phen 39(1), 1183 (2019).

    Google Scholar 

  58. D. Liu, R. Sa, and K. Wu, First-principles insight on the electronic and optical properties of Ge-based inorganic perovskites. Appl. Phys. Express 12, 071007 (2019).

    Article  CAS  Google Scholar 

  59. I. Wycliffe, M. Maxwell, M. Christopher, M. Maurice, O. Victor, and A. Celline, Thickness dependence of window layer on CH3NH3PbI3-XClX Perovskite solar cell. Int. J. Photoenergy 2020, 8877744 (2020).

    Google Scholar 

  60. Y. Gan, X. Bi, Y. Liu, B. Qin, Q. Li, Q. Jiang, and P. Mo, Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 13, 5907 (2020).

    Article  CAS  Google Scholar 

  61. A.S. Shamsuddin, P.N.A. Fahsyar, N.A. Ludin, I. Burhan, and S. Mohamad, Device simlation of perovskite solar cells with molybdenum disulfide as active buffer layer. Bull. Electr. Eng. Inform. 8(4), 1251 (2019).

    Google Scholar 

  62. A. Hima, K.A.A.K. Le, A. Rezzoug, M.B. Yahkem, A. Khechekhouche, and I. Kemerchou, Simulation and optimization of CH3NH3PbI3 based inverted planar heterojunction solar cell using SCAPS software. Int. J. Energetica 4, 56 (2019).

    Article  Google Scholar 

  63. K. Bibi, I. Ahmad, K. Hayat, M. Ali, S. K. Shah, Simulation and experimental device performance analysis of TiO2 based inverted organic solar cells. J. Electron. Mat. 51(9), 5181–5187 (2022).

  64. L. Lin, L. Jiang, P. Li, B. Fan, and Y. Qiu, A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing. J. Phys. Chem. Sol. 124, 205 (2019).

    Article  CAS  Google Scholar 

  65. M. Lazemi, S. Asgharizadeh, and S. Bellucci, A computational approach to interface engineering of lead-free CH3NH3SnI3 highly-efficient perovskite solar cells. Phys. Chem. Chem. Phys. 20, 25683 (2018).

    Article  CAS  Google Scholar 

  66. F. Jannat, S. Ahmed, and M.A. Alim, performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik 228, 166202 (2021).

    Article  CAS  Google Scholar 

  67. M. Kevin, W.L. Ong, G.H. Lee, and G.W. Ho, Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011).

    Article  CAS  Google Scholar 

  68. W. Ming, D. Yang, T. Li, L. Zhang, and M.-H. Du, Formation and diffusion of metal impurities in perovskite solar cell material CH3NH3PbI3: implications on solar cell degradation and choice of electrode. Adv. Sci. 5(2), 1700662 (2018).

    Article  Google Scholar 

  69. B. Qia and J. Wang, Open-circuit voltage in organic solar cells. J. Mater. Chem. 22, 24315 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Marc Burgelman and his team at the University of Gen for the access of SCAPS. Authors are highly thankful to the reviewers for providing constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinay K. Verma or Ram Chandra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 341 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Verma, V.K., Singh, R.C. et al. Numerical Analysis of High-Efficiency CH3NH3PbI3 Perovskite Solar Cell with PEDOT:PSS Hole Transport Material Using SCAPS 1D Simulator. J. Electron. Mater. 52, 4338–4350 (2023). https://doi.org/10.1007/s11664-023-10257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10257-5

Keywords

Navigation