Skip to main content

Advertisement

Log in

Futuristic Approach Towards Replacement of Aqueous Electrolyte with Solid Polymer Electrolyte for Supercapacitor Applications

  • Topical Collection: International Conference on Organic Electronics 2022
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) based on ionic liquid (IL) were created using poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer mixed with 30 wt.% sodium thiocynate and varying weight ratios of EMIm-TCM ranging from 0 wt.% to 300 wt.%. The structural, electrical, thermal, morphological, and electrochemical features of the SPEs films, showing the effects of PVDF-HFP and the level of IL loading, have all been carefully examined. With the addition of IL, the mechanical qualities and mechanical stability of PVDF-HFP were enhanced, getting closer to the smaller usage for liquid electrolytes in energy devices. With the addition of 300 wt.% IL, the maximum ionic conductivity of 10−3 S cm−1 was attained. Additionally, the presence of the amorphous region in the IL-based electrolyte supported the movement of the EMIm + and TCM − ions in the PVDF-HFP chains, as shown by polarized optical microscopy and the ionic transference number. Due to their strong ionic conductivity, good mechanical attributes, and potential for long-term use in electrical double-layer capacitor applications, the developed PVDF-HFP/NaSCN/EMIm-TCM complex-based SPEs are particularly promising, showing the specific capacitance of 10 Fg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Tong, J. Du, L. Yin, D. Zhang, W.Z. Yu, Y.W. Liu, C. Liu, Y. Liang, D.-M. Sun, L.-P. Ma, H.-M. Chen and W. Ren, A polymer electrolyte design enables ultralow-work-function electrode for high-performance optoelectronics. Nat. Commun. 13(1), 4987 (2022). https://doi.org/10.1038/s41467-022-32651-z.

    Article  CAS  Google Scholar 

  2. S. Das and A. Ghosh, Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: effect of TiO2 and ZnO nanoparticles on electrochemical behavior. J. Appl. Polym. Sci. 137(22), 48757 (2020). https://doi.org/10.1002/app.48757.

    Article  CAS  Google Scholar 

  3. D. Lee, Y.H. Song, U.H. Choi and J. Kim, Highly flexible and stable solid-state supercapacitors based on a homogeneous thin ion gel polymer electrolyte using a poly(dimethylsiloxane) stamp. ACS Appl. Mater. Interface 11(45), 42221–42232 (2019). https://doi.org/10.1021/acsami.9b14990.

    Article  CAS  Google Scholar 

  4. J. Castillo, A. Santiago, X. Judez, I. Garbayo, J.A. Coca Clemente, M.C. Moran-Minnana, A. Villaverde, J.A. Gonzalez-Marcos, H. Zhang, M. Armand and C. Li, Safe flexible and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chem. Mater. 33(22), 8812–8821 (2021). https://doi.org/10.1021/acs.chemmater.1c02952.

    Article  CAS  Google Scholar 

  5. A. Mertens, S. Yu, N. Schön, d.c. Gunduz, H. Tempel, R. Schierholz and R.A. Eichel, Superionic bulk conductivity in Li1.1Al0. 3Ti1.7 (PO4) 3 solid electrolyte. Solid. State. Ion 309, 180–186 (2017).

    Article  CAS  Google Scholar 

  6. S. Mathela, B. Sangwan, P.S. Dhapola, P.K. Singh and R. Tomar, Ionic liquid incorporated poly(ethylene oxide) (PEO) doped with potassium iodide (KI) solid polymer electrolyte for energy device. Mater Today Proc. 49, 3250–3253 (2022). https://doi.org/10.1016/j.matpr.2020.12.375.

    Article  CAS  Google Scholar 

  7. P. Tuhania, P.K. Singh, B. Bhattachrya, P.S. Dhapola, P.K. Shivani Yadav and M.G. Shukla, PVDF-HFP and 1-ethyl-3-methylimidazolium thiocyanate–doped polymer electrolyte for efficient supercapacitors. High Perform. Polym. 30(8), 911–917 (2018). https://doi.org/10.1177/0954008318772009.

    Article  CAS  Google Scholar 

  8. V.R. Sunitha, K.M. Suraj, G.S. Kabbur, N. Pavan, M.R. Sandesh, C. Suhas, N. Lalithnarayan and S.R. Laxman, Lithium ion conduction in PVA-based polymer electrolyte system modified with combination of nanofillers. Ionics 26(2), 823–829 (2020). https://doi.org/10.1007/s11581-019-03225-9.

    Article  CAS  Google Scholar 

  9. I. Zakariyau, B. Gultekin, V. Singh and P.K. Singh, Electrochemical double-layer supercapacitor using poly(methyl methacrylate) solid polymer electrolyte. High Perform. Polym. 32(2), 201–207 (2020). https://doi.org/10.1177/0954008319895556.

    Article  CAS  Google Scholar 

  10. H. Wu, P. Gao, L. HaoJia, L.Z. Zou, X. Cao, M.H. Engelhard, M.E. Bowden, M.S. Ding, J. Hu, H. Dehong, S.D. Burtan, X. Kang, C. Wang, Z. Ji-Guang and X. Wu, A polymer-in-salt electrolyte with enhanced oxidative stability for lithium metal polymer batteries. ACS Appl. Mater. Interfaces 13(27), 31583–31593 (2021). https://doi.org/10.1021/acsami.1c04637.

    Article  CAS  Google Scholar 

  11. K. Kobayashi, G. Pagot, K. Vezzù, F. Bertasi, V. di Noto and Y. Tominaga, Effect of plasticizer on the Ion-conductive and dielectric behavior of poly(ethylene carbonate)-based Li electrolytes. Polym. J. 53(1), 149–155 (2021). https://doi.org/10.1038/s41428-020-00397-4.

    Article  CAS  Google Scholar 

  12. Y. Mallaiah, V.R. Jeedi, R. Swarnalatha, A. Raju, S. Narender Reddy and A. Sadananda Chary, Impact of polymer blending on ionic conduction mechanism and dielectric properties of sodium based PEO-PVdF solid polymer electrolyte systems. J. Phys. Chem. Solid. 155, 110096 (2021). https://doi.org/10.1016/j.jpcs.2021.110096.

    Article  CAS  Google Scholar 

  13. G. Xing, G. Kuang, Y. Tao, Y. Wang, Y. Kang, Y. Guo and S. Zhang, Ultra-strong ionic liquid-based polymer composite electrolyte for high performance electrochromic devices. Sol. Energy Mater Sol. Cell. 248, 111968 (2022). https://doi.org/10.1016/j.solmat.2022.111968.

    Article  CAS  Google Scholar 

  14. A.M. Gaur and D.S. Rana, In situ measurement of dielectric permittivity and electrical conductivity of CoCl2/BaCl2 doped PVDF composite at elevated temperature. J. Inorg. Organomet. Polym. Mater. 29(5), 1637–1644 (2019). https://doi.org/10.1007/s10904-019-01126-y.

    Article  CAS  Google Scholar 

  15. A.T. Manfo, P.K. Singh, R.M. Mehra, R.C. Singh and M. Gupta, Structural, vibrational, electrical, electrochemical and capacitive investigations on ionic liquid doped P (VDF-HFP) + NaSCN based polymer electrolytes. Recent Innov. Chem. Eng. (Former. Recent Pat. Chem. Eng.) 14(1), 21–34 (2020). https://doi.org/10.2174/2405520413999200719141337.

    Article  CAS  Google Scholar 

  16. S. Kumar, P.K. Singh, D. Agarwal, P.S. Dhapola, T. Sharma, S.V. Savilov, E.A. Arkhipova, M.K. Singh and A. Singh, Structure, dielectric, and electrochemical studies on poly(vinylidene fluoride-co-hexafluoropropylene)/ionicliquid 1-ethyl-3-methylimidazolium tricyanomethanide-based polymer electrolytes. Physica Status Solidi (A) (2022). https://doi.org/10.1002/pssa.202100711.

    Article  Google Scholar 

  17. G. Nath, P.K. Singh, P.S. Dhapola, I.M. Sushil Dohare, T.S. Noor and A. Singh, Fabrication of cornstarch biopolymer-derived nano porous carbon as electrode material for supercapacitor application. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-02656-1.

    Article  Google Scholar 

  18. A. Singh, P.S. Dhapola, S. Kumar, S. Konwar, P.K. Singh, A.M.M. Ali, D. Agarwal, D. Singh, M.Z.A. Karol StrzalKowski, S.V. Yahya and B.J. Savilov, Highly conducting ionic liquid doped polymer electrolyte for energy storage applications. J. Sci. Adv. Mater. Device. (2022). https://doi.org/10.1016/j.jsamd.2022.100511.

    Article  Google Scholar 

  19. P.S. Dhapola, A. Singh, M. Karakoti, M.K. Singh, S. Konwar, I.M. Sushil Dohare, P.K. Noor, N.G. Singh and Sahoo, Synthesis of porous carbon from a PVC polymer and its application in supercapacitors. Mater. Adv. (2022). https://doi.org/10.1039/d1ma01182k.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riddhi Dhawan or Abhimanyu Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhawan, R., Singh, A., Kumar, S. et al. Futuristic Approach Towards Replacement of Aqueous Electrolyte with Solid Polymer Electrolyte for Supercapacitor Applications. J. Electron. Mater. 52, 4295–4301 (2023). https://doi.org/10.1007/s11664-023-10212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10212-4

Keywords

Navigation