Skip to main content

Advertisement

Log in

The correlation of Li+ Carrier Towards Immittance Conduction Properties on Alginate-PVA-LiNO3 Complexes-Based Solid Polymer Electrolytes System

  • Topical Collection: International Conference on Organic Electronics 2022
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The increasing interest in green energy storage materials for electrochemical devices with the development of bio-polymer materials as electrolytes has recently attracted significant attention. It can offer many high-value opportunities and lower costs, and is environmentally friendly. In the present work, an investigation of the correlation of Li+ carrier in alginate-poly(vinyl alcohol) complexes-based solid bio-polymer electrolytes (SPE) was carried out and successfully prepared via the solution-casting method. The prepared SPE system’s immittance response properties were investigated using electrical impedance spectroscopy (EIS) at different frequencies and temperatures. The sample containing 35 wt% of LiNO3 was the most conducting sample, with ionic conductivity at ambient temperature achieved at 3.46 S cm−1 × 10−3 S cm−1. The temperature-dependent ionic conduction of the SPE system shows the properties of Arrhenius where the sample is thermally activated. Based on the electrical formulism approach, it shows that the SPE system is aligned with the ionic conductivity trend and reveals non-Debye characteristics. It also shows that the results of this finding have good potential to be applied as an electrolyte for application in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Long, S. Wang, M. Xiao, and Y. Meng, J. Mater. Chem. A 4, 10038 (2016).

    Article  CAS  Google Scholar 

  2. E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, and F. Wu, Chem. Rev. 120, 7020 (2020).

    Article  CAS  Google Scholar 

  3. A. Arya and A.L. Sharma, J. Mater. Sci. 55, 6242 (2020).

    Article  CAS  Google Scholar 

  4. Y. Jiang, X. Yan, Z. Ma, P. Mei, W. Xiao, Q. You, and Y. Zhang, Polymers (Basel) 10, 1 (2018).

    Google Scholar 

  5. A. Arya and A.L. Sharma, J. Mater. Sci. Mater. Electron. 29, 17903 (2018).

    Article  CAS  Google Scholar 

  6. S.B. Aziz, M.M. Nofal, R.T. Abdulwahid, M.F.Z. Kadir, J.M. Hadi, M.M. Hessien, W.O. Kareem, E.M.A. Dannoun, and S.R. Saeed, Results Phys. 29, 104770 (2021).

    Article  Google Scholar 

  7. L. Sampathkumar, P. Christopher Selvin, S. Selvasekarapandian, P. Perumal, R. Chitra, and M. Muthukrishnan, Ionics 25(3), 1067 (2019).

    Article  CAS  Google Scholar 

  8. N.M.J. Rasali, Y. Nagao, and A.S. Samsudin, Ionics (Kiel) 25, 641 (2019).

    Article  CAS  Google Scholar 

  9. H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, and Z. Zhou, Chem. Soc. Rev. 46, 797 (2017).

    Article  CAS  Google Scholar 

  10. D.E. Fenton, J.M. Parker, and P.V. Wright, Polymer (Guildf) 14, 589 (1973).

    Article  CAS  Google Scholar 

  11. S.B. Aziz, M.H. Hamsan, R.M. Abdullah, and M.F.Z. Kadir, Molecules 24, 2503 (2019).

    Article  CAS  Google Scholar 

  12. A.F. Fuzlin, M.A. Saadiah, M.M. Hasan, Y. Nagao, I.I. Misnon, and A.S. Samsudin, Int. J. Hydrogen Energy 21, 457 (2022).

    Google Scholar 

  13. S. Karthikeyan, S. Selvasekarapandian, M. Premalatha, S. Monisha, G. Boopathi, G. Aristatil, A. Arun, and S. Madeswaran, Ionics (Kiel) 23, 2775 (2017).

    Article  CAS  Google Scholar 

  14. Y.M. Yusof, H.A. Illias, M.F. Shukur, and M.F.Z. Kadir, Ionics (Kiel) 23, 681 (2017).

    Article  CAS  Google Scholar 

  15. A.F. Fuzlin, M.A. Saadiah, Y. Yao, Y. Nagao, and A.S. Samsudin, J. Polym. Res. 27, 1 (2020).

    Article  Google Scholar 

  16. A.F. Fuzlin and A.S. Samsudin, Polym. Bull. 78, 2155 (2021).

    Article  CAS  Google Scholar 

  17. A.F. Fuzlin, Y. Nagao, I.I. Misnon, and A.S. Samsudin, Ionics (Kiel) 26, 1923 (2020).

    Article  CAS  Google Scholar 

  18. M. Sadiq, M.M.H. Raza, S.K. Chaurasia, M. Zulfequar, and J. Ali, J. Mater. Sci. Mater. Electron. 32, 19390 (2021).

    Article  CAS  Google Scholar 

  19. M.A. Saadiah, D. Zhang, Y. Nagao, S.K. Muzakir, and A.S. Samsudin, J. Non Cryst. Solids 511, 201 (2019).

    Article  CAS  Google Scholar 

  20. S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, R.T. Abdulwahid, H.O. Ghareeb, and H.J. Woo, Results Phys. 15, 102584 (2019).

    Article  Google Scholar 

  21. S.B. Aziz, M.A. Brza, M.H. Hamsan, M.F.Z. Kadir, S.K. Muzakir, and R.T. Abdulwahid, J. Mater. Res. Technol. 9, 3734 (2020).

    Article  CAS  Google Scholar 

  22. H.T. Ahmed and O.G. Abdullah, Polymers (Basel) 11, 1245 (2019).

    Article  Google Scholar 

  23. A. Zulkifli, M.A. Saadiah, N.F. Mazuki, and A.S. Samsudin, Mater. Chem. Phys. 253, 123312 (2020).

    Article  CAS  Google Scholar 

  24. A. El Nemr, E. Serag, A. El-Maghraby, S.A. Fathy, and F.F. Abdel Hamid, J. Macromol. Sci. Part A 56(8), 781 (2019).

    Article  Google Scholar 

  25. C. Nusrath-Unnisa, S. Chitra, S. Selvasekarapandian, S. Monisha, G. Nirmala-Devi, V. Moniha, and M. Hema, Ionics (Kiel) 24, 1979 (2018).

    Article  CAS  Google Scholar 

  26. M. Naeimi, R. Tajedin, F. Farahmandfar, M. Naeimi, and M. Monajjemi, Mater. Res. Express 7, 095401 (2020).

    Article  CAS  Google Scholar 

  27. Z. Xu, J. Li, H. Zhou, X. Jiang, C. Yang, F. Wang, Y. Pan, N. Li, X. Li, L. Shi, and X. Shi, RSC Adv. 6, 43626 (2016).

    Article  CAS  Google Scholar 

  28. B.A. Abdulkadir, J.O. Dennis, Y. Al-Hadeethi, M.F.B.A. Shukur, E.M. Mkawi, N. Al-Harbi, K.H. Ibnaouf, O. Aldaghri, F. Usman, and A. Abbas-Adam, Polymers (Basel) 13, 1 (2021).

    Google Scholar 

  29. N.M. Ghazali, A.F. Fuzlin, M.A. Saadiah, M.M. Hasan, Y. Nagao, and A.S. Samsudin, J. Non Cryst. Solids 598, 121939 (2022).

    Article  CAS  Google Scholar 

  30. B. Jinisha, A.F. Femy, M.S. Ashima, and S. Jayalekshmi, Mater. Today Proc. 5, 21189 (2018).

    Article  CAS  Google Scholar 

  31. M.R. Asghar, M.T. Anwar, T. Rasheed, A. Naveed, X. Yan, and J. Zhang, in IOP Conf. Ser. Mater. Sci. Eng. (IOP Publishing, 2019), p. 012017.

  32. N.M. Ghazali, N.F. Mazuki, A.S. Samsudin, and I.O.P. Conf, Ser. Mater. Sci. Eng. 1092, 012047 (2021).

    CAS  Google Scholar 

  33. X. Yuan, H. Wang, J. Colin Sun, and J. Zhang, Int. J. Hydrogen Energy 32, 4365 (2007).

    Article  CAS  Google Scholar 

  34. R. Muchakayala, S. Song, S. Gao, X. Wang, and Y. Fan, Polym. Test. 58, 116 (2017).

    Article  CAS  Google Scholar 

  35. N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura, and S. Asath Bahadur, Polym. Bull. 71, 1061 (2014).

    Article  CAS  Google Scholar 

  36. M.A. Saadiah, Y. Nagao, and A.S. Samsudin, Int. J. Hydrogen Energy 45, 14880 (2020).

    Article  CAS  Google Scholar 

  37. N. Arora, S. Singh, R. Kumar, R. Kumar, and A. Kumari, Solid State Ion. 317, 175 (2018).

    Article  CAS  Google Scholar 

  38. Y. Li, F. Ding, Z. Xu, L. Sang, L. Ren, W. Ni, and X. Liu, J. Power Sour. 397, 95 (2018).

    Article  CAS  Google Scholar 

  39. M. Ravi, Y. Pavani, K. Kiran Kumar, S. Bhavani, A.K. Sharma, and V.V.R. Narasimha Rao, Mater. Chem. Phys. 130, 442 (2011).

    Article  CAS  Google Scholar 

  40. N.F. Mazuki, M.Z. Kufian, Y. Nagao, and A.S. Samsudin, J. Polym. Environ. 30, 1864 (2022).

    Article  CAS  Google Scholar 

  41. K. Gohel and D.K. Kanchan, J. Mater. Sci. Mater. Electron. 30, 12260 (2019).

    Article  CAS  Google Scholar 

  42. A.S.A. Khiar and A.K. Arof, Ionics (Kiel) 16, 123 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education (MOHE) for providing financial support under the Fundamental Research Grant Scheme (FRGS) (RDU19001114), Universiti Malaysia Pahang for providing additional financial support under the UMP internal grant (RDU 223304), Postgraduate Grants Research Scheme (PGRS) (PGRS2003113) and Faculty of Industrial Sciences and Technology (FIST) for laboratory facilities, and Ionic Materials Team members for the help and support given for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Samsudin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsudin, A.S., Suhaimi, N.S. & Ghazali, N.M. The correlation of Li+ Carrier Towards Immittance Conduction Properties on Alginate-PVA-LiNO3 Complexes-Based Solid Polymer Electrolytes System. J. Electron. Mater. 52, 4261–4268 (2023). https://doi.org/10.1007/s11664-022-10168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10168-x

Keywords

Navigation