Skip to main content
Log in

Efficiency Improvement of Semitransparent Polymer Solar Cells with Invariable Color Render Index

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The color render index (CRI) and the power conversion efficiency (PCE) are two critical parameters of semitransparent polymer solar cells (PSCs) which are contradictory. The CRI is strongly dependent on the absorption of the polymer:fullerene active layer. The PCE not only relies on absorption but also on a bulk heterojunction structure. Here, the 1,8-diiodooctane (DIO) additive has been added to PCDTBT:PC71BM blend PSCs to improve the PCE with almost unchanged CRI. Based on the higher boiling point than the host solvent o-dichlorobenzene (ODB) and the better solubility of PC71BM, the device photovoltaic properties with DIO additive were obviously changed. The PCE improvement is attributed to the charge recombination and transportation process which means that the utilization of the absorbed photons is improved. However, this improvement cannot affect the transmitted light. Hence, the CRI of transmitted light is nearly invariable. With 3% v/v DIO, the short-circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) are all increased. Correspondingly, a highest PCE is achieved of 6.15%, while the reference device without DIO only has a PCE of 5.23%. At the same time, the CRI is slightly changed from 82 to 81.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, and A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222 (2007).

    Article  CAS  Google Scholar 

  2. F. Kaka, M. Keshav, and P.C. Ramamurthy, Optimising the photovoltaic parameters in donor–acceptor–acceptor ternary polymer solar cells using machine learning framework. Sol. Energy 231, 447 (2022).

    Article  CAS  Google Scholar 

  3. Y. Ma, D. Cai, S. Wan, P. Yin, and Q. Zheng, Control over π–π stacking of heteroheptacene-based nonfullerene acceptors for 16% efficiency polymer solar cells. Natl. Sci. Rev. 7, 12 (2020).

    Article  CAS  Google Scholar 

  4. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995).

    Article  CAS  Google Scholar 

  5. M. Zhang, L. Zhu, G. Zhou, T. Hao, and F. Liu, Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 12, 309 (2021).

    Article  CAS  Google Scholar 

  6. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591 (2012).

    Article  Google Scholar 

  7. J. Yuan, H. Dong, M. Li, X. Huang, J. Zhong, Y. Li, and W. Ma, High polymer/fullerene ratio realized in efficient polymer solar cells by tailoring of the polymer side-chains. Adv. Mater. 26, 3624 (2014).

    Article  CAS  Google Scholar 

  8. Y.Y. Lee, K.H. Tu, C.C. Yu, S.S. Li, J.Y. Hwang, C.C. Lin, K.H. Chen, L.C. Chen, H.L. Chen, and C.W. Chen, Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5, 6564 (2011).

    Article  CAS  Google Scholar 

  9. Z. Lin, L. Zhang, S. Tu, W. Wang, and Q. Ling, Highly thermally stable all-polymer solar cells enabled by photo-crosslinkable bromine-functionalized polymer donors. Sol. Energy 201, 489 (2020).

    Article  CAS  Google Scholar 

  10. D. Khatiwada, S. Venkatesan, J. Chen, Q. Chen, N. Adhikari, A. Dubey, A.F. Mitul, L. Mohammad, J. Sun, and C. Zhang, Morphological evolution and its impacts on performance of polymer solar cells. IEEE Trans. Electron Dev. 62, 1284 (2015).

    Article  CAS  Google Scholar 

  11. X. Guo, M. Zhang, W. Ma, S. Zhang, J. Hou, and Y. Li, Effect of solvent additive on active layer morphologies and photovoltaic performance of polymer solar cells based on PBDTTT-C-T/PC71BM. RSC Adv. 6, 51924 (2016).

    Article  CAS  Google Scholar 

  12. L. Chang, H.W.A. Lademann, J.B. Bonekamp, K. Meerholz, and A.J. Moule, Effect of trace solvent on the morphology of P3HT:PCBM bulk heterojunction solar cells. Adv. Funct. Mater. 21, 1779 (2011).

    Article  CAS  Google Scholar 

  13. S. Lee, D. Jeong, C. Kim, C. Lee, and B.J. Kim, Eco-friendly polymer solar cells: advances in green-solvent processing and material design. ACS Nano 14, 14493 (2020).

    Article  CAS  Google Scholar 

  14. J.J. Van Franeker, M. Turbiez, W. Li, M.M. Wienk, and R.A.J. Janssen, A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 6, 6229 (2015).

    Article  Google Scholar 

  15. M. Shang, X. Yu, Y. Xu, H. Wang, and L. Hui, Effect of different solvents on the performance of ternary polymer solar cells based on PTB7:PC71BM:F8BT. J. Phys. D Appl. Phys. 48, 295105 (2015).

    Article  Google Scholar 

  16. T. Dai, X. Li, Y. Zhang, D. Xu, and X. Chen, Performance improvement of polymer solar cells with binary additives induced morphology optimization and interface modification simultaneously. Sol. Energy 201, 330 (2020).

    Article  CAS  Google Scholar 

  17. Y. Zheng, S. Li, Z. Ding, and J. Yu, Effects of different polar solvents for solvent vapor annealing treatment on the performance of polymer solar cells. Org. Electron. 15, 2647 (2014).

    Article  CAS  Google Scholar 

  18. M. Li, L. Wang, J. Liu, K. Zhou, X. Yu, R. Xing, Y. Geng, and Y. Han, Cooperative effects of solvent and polymer acceptor co-additives in P3HT:PDI solar cells: simultaneous optimization in lateral and vertical phase separation. Phys. Chem. Chem. Phys. 16, 4528 (2014).

    Article  CAS  Google Scholar 

  19. H.Y. Chen, H. Yang, G. Yang, S. Sista, R. Zadoyan, G. Li, and Y. Yang, Fast-grown interpenetrating network in poly(3-hexylthiophene): methanofullerenes solar cells processed with additive. J. Phys. Chem. C 113, 7946 (2009).

    Article  CAS  Google Scholar 

  20. J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, and A.J. Heeger, Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130(11), 3619–3623 (2008).

    Article  CAS  Google Scholar 

  21. C.-C. Chen, L. Dou, J. Gao, W.-H. Chang, G. Li, and Y. Yang, High-performance semi-transparent polymer solar cells possessing tandem structures. Energy Environ. Sci. 6, 2714 (2013).

    Article  CAS  Google Scholar 

  22. J. Czolk, A. Puetz, D. Kutsarov, M. Reinhard, U. Lemmer, and A. Colsmann, Inverted semi-transparent polymer solar cells with transparency color rendering indices approaching 100. Adv. Energy Mater. 3, 386 (2013).

    Article  CAS  Google Scholar 

  23. A. Colsmann, A. Puetz, A. Bauer, J. Hanisch, E. Ahlswede, and U. Lemmer, Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties. Adv. Energy Mater. 1, 599 (2011).

    Article  CAS  Google Scholar 

  24. T. Chen, S. Ruan, X. Zhang, G. Xie, S. Liang, X. Kong, D. Wei, C. Liu, and W. Chen, Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Appl. Phys. Lett. 93, 411 (2008).

    Google Scholar 

  25. H. Xue, X. Kong, Z. Liu, C. Liu, and J. Zhou, TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett. 90, 223505 (2007).

    Article  Google Scholar 

  26. N. Blouin, A. Michaud, and M. Leclerc, A low-bandgap Poly(2,7-Carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19, 2295 (2007).

    Article  CAS  Google Scholar 

  27. H.L. Yip and K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5, 5994 (2012).

    Article  CAS  Google Scholar 

  28. T. Chen, S. Ruan, G. Xie, X. Kong, S. Liang, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Role of tungsten oxide in inverted polymer solar cells. Appl. Phys. Lett. 94, 29 (2009).

    Google Scholar 

  29. Z. Ling, S. Zhao, X. Zheng, Q. Bo, H. Di, and X. Xu, Two effects of 1,8-diiodooctane on PTB7-Th:PC71BM polymer solar cells. Org. Electron. 34, 188 (2016).

    Article  Google Scholar 

  30. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, and Y. Yang, 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv. Mater. 25(46), 6642–6671 (2013).

    Article  CAS  Google Scholar 

  31. H. Wang, Y. Zheng, L. Zhang, and J. Yu, Effect of two-step annealing on the performance of ternary polymer solar cells based on P3HT:PC71BM:SQ. Sol. Energy Mater. Sol. Cells 128, 215 (2014).

    Article  CAS  Google Scholar 

  32. G. Dennler, K. Forberich, M.C. Scharber, C.J. Brabec, and T. Fromherz, Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells. J. Appl. Phys. 102, 1789 (2007).

    Article  Google Scholar 

  33. Z.A. Tan, C. Yang, E. Zhou, W. Xiang, and Y. Li, Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer. Appl. Phys. Lett. 91, 1324 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

This research were funded by the National Natural Science Foundation of China (Nos. 22109017, 62241401), the Natural Science Foundation of the Anhui Higher Education Institutions (Nos. 2022AH051098, 2022AH051086, 2022AH051125, KJ2020A0710, KJ2021B11, KJ2021A1089), the Innovation and Entrepreneurship Training Program for College Students of Chuzhou University (No. 2022CYXL002), the Research Program of Chuzhou University (No. 2022XJYB07), the Scientific Foundation of Chuzhou University (No. 2022qd035), the State Key Laboratory of Metastable Materials Science and Technology (No. 2018014) and the Semiconductor and Sensor Research Centre of Chuzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Yu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Yang, J., Wang, B. et al. Efficiency Improvement of Semitransparent Polymer Solar Cells with Invariable Color Render Index. J. Electron. Mater. 52, 2044–2052 (2023). https://doi.org/10.1007/s11664-022-10164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10164-1

Keywords

Navigation