Skip to main content
Log in

Ultrathin Elementary Te Nanocrystalline Films Prepared by Pure Physical Method for NO2 Detection

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Detection characteristics of elementary tellurium (Te) nanocrystalline thin film for nitrogen dioxide (NO2) gas detection are presented. An electron beam evaporation method (eBE) was used to deposit elementary Te ultrathin nanocrystalline films at room temperature, with the thickness from 10 nm to 40 nm. An intermittent deposition method was employed to regulate the distribution of grains during the whole film deposition process. A type of compact and continuous nanocrystalline film structure was confirmed by x-ray diffraction and transmission electron microscopy analysis. Such a structural feature of thin films is able to provide a continuous grain boundary, which can increase the surface-to-volume ratio and further improve the sensitivity of the sensors. The effects of film thickness and gas concentration with respect to the sensor performance have been evaluated. The sensor presents a ppm (parts per million)-level NO2 detection limit in an atmospheric environment, and the maximum sensitivity is up to 7.926 × 105 ppm−1. In addition, a complete evaluation demonstration system was developed for a NO2 concentration real-time monitor, which provides the possibility for the sensor to be applied to actual environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock, X. Song, H. Kim, V.R. Shrestha, Y. Gao, K.B. Crozier, M. Scott, and A. Javey, Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253 (2018).

    Article  CAS  Google Scholar 

  2. J.J. Loferski, Infrared optical properties of single crystals of tellurium. Phys. Rev. 93, 707 (1954).

    Article  CAS  Google Scholar 

  3. A. Pradhan, A. Roy, S. Tripathi, A. Som, D. Sarkar, J.K. Mishra, K. Roy, T. Pradeep, N. Ravishankar, and A. Ghosh, Ultra-high sensitivity infra-red detection and temperature effects in a graphene–tellurium nanowire binary hybrid. Nanoscale 9, 9284 (2017).

    Article  CAS  Google Scholar 

  4. Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W.A. Goddard, M.J. Kim, X. Xu, P. Ye, and W. Wu, Field-effect transistors made from solution-grown two-dimensional tellurene. Nature Electr. 1, 228 (2018).

    Article  Google Scholar 

  5. C. Zhao, C. Tan, D.-H. Lien, X. Song, M. Amani, M. Hettick, H.Y.Y. Nyein, Z. Yuan, L. Li, M.C. Scott, and A. Javey, Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 15, 53 (2020).

    Article  CAS  Google Scholar 

  6. S. Lin, W. Li, Z. Chen, J. Shen, B. Ge, and Y. Pei, Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 1 (2016).

    Article  Google Scholar 

  7. W. Wang, C. Li, X. Li, Y. Jia, F. Jiang, C. Liu, R. Tan, and J. Xu, Fabrication of freestanding tellurium nanofilm and its thermoelectric performance. Thin Solid Films 654, 23 (2018).

    Article  CAS  Google Scholar 

  8. D. Tsiulyanu, Tellurium thin films in sensor technology. Nanotechnol. Basis Adv. Sens. (2011). https://doi.org/10.1007/978-94-007-0903-4_38.

    Article  Google Scholar 

  9. W. Wu, G. Qiu, Y. Wang, R. Wang, and P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47, 7203 (2018).

    Article  CAS  Google Scholar 

  10. D. Wang, A. Yang, T. Lan, C. Fan, J. Pan, Z. Liu, J. Chu, H. Yuan, X. Wang, M. Rong, and K. Nikhil, Tellurene based chemical sensor. J. Mater. Chem. A. 7, 26326 (2019).

    Article  CAS  Google Scholar 

  11. S. Sen, K. Muthe, N. Joshi, S. Gadkari, S. Gupta, M. Roy, S. Deshpande, and J. Yakhmi, Room temperature operating ammonia sensor based on tellurium thin films. Sens. Actuators, B Chem. 98, 154 (2004).

    Article  CAS  Google Scholar 

  12. T. Siciliano, M. Di Giulio, M. Tepore, E. Filippo, G. Micocci, and A. Tepore, Tellurium sputtered thin films as NO2 gas sensors. Sens. Actuators, B Chem. 135, 250 (2008).

    Article  CAS  Google Scholar 

  13. D. Tsiulyanu, S. Marian, V. Miron, and H.-D. Liess, High sensitive tellurium based NO2 gas sensor. Sens. Actuators, B Chem. 73, 35 (2001).

    Article  CAS  Google Scholar 

  14. D. Tsiulyanu, and O. Mocreac, Concentration induced damping of gas sensitivity in ultrathin tellurium films. Sens. Actuators, B Chem. 177, 1128 (2013).

    Article  CAS  Google Scholar 

  15. D. Tsiulyanu, I. Stratan, A. Tsiulyanu, H.-D. Liess, and I. Eisele, Investigation of the oxygen, nitrogen and water vapour cross-sensitivity to NO2 of tellurium-based thin films. Sens. Actuators, B Chem. 121, 406 (2007).

    Article  CAS  Google Scholar 

  16. D. Tsiulyanu, A. Tsiulyanu, H.-D. Liess, and I. Eisele, Characterization of tellurium-based films for NO2 detection. Thin Solid Films 485, 252 (2005).

    Article  CAS  Google Scholar 

  17. L. Guan, S. Wang, W. Gu, J. Zhuang, H. Jin, W. Zhang, T. Zhang, and J. Wang, Ultrasensitive room-temperature detection of NO2 with tellurium nanotube based chemiresistive sensor. Sens. Actuators, B Chem. 196, 321 (2014).

    Article  CAS  Google Scholar 

  18. D. Tsiulyanu, and A. Moraru, Nanocrystalline tellurium films: fabrication and gas sensing properties. Nanosci. Adv. CBRN Agents Detect., Inf. Energy Secur. (2015). https://doi.org/10.1007/978-94-017-9697-2_40.

    Article  Google Scholar 

  19. T. Siciliano, E. Filippo, A. Genga, G. Micocci, M. Siciliano, and A. Tepore, Single-crystalline Te microtubes: synthesis and NO2 gas sensor application. Sens. Actuators, B Chem. 142, 185 (2009).

    Article  CAS  Google Scholar 

  20. D.-S. Lee, S.-D. Han, J.-S. Huh, and D.-D. Lee, Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor. Sens. Actuators, B Chem. 60, 57 (1999).

    Article  CAS  Google Scholar 

  21. H. Sun, Q. Wei, Q. Su, X. Zhu, P. Wangyang, X. Gao, and D. Yang, Purely physical fabrication of 10 cm × 10 cm, highly uniform PbI2 thin films on rigid and flexible substrates for x-ray photodetection application. APL Mater. 8, 031108 (2020).

    Article  CAS  Google Scholar 

  22. M. Venkatachalam, M. Kannan, S. Jayakumar, R. Balasundaraprabhu, A. Nandakumar, and N. Muthukumarasamy, CuInxGa1−xSe2 thin films prepared by electron beam evaporation. Sol. Energy Mater. Sol. Cells 92, 571 (2008).

    Article  CAS  Google Scholar 

  23. T.-S. Yang, C.-B. Shiu, and M.-S. Wong, Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation. Surf. Sci. 548, 75 (2004).

    Article  CAS  Google Scholar 

  24. W. Zheng, Y. Xu, L. Zheng, C. Yang, N. Pinna, X. Liu, and J. Zhang, MoS2 Van der Waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Func. Mater. 30, 2000435 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 62005029 and Sichuan Science and Technology Research Foundation under Grant No. 2021YFG0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Sun.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 885 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Su, Q., Liu, Y. et al. Ultrathin Elementary Te Nanocrystalline Films Prepared by Pure Physical Method for NO2 Detection. J. Electron. Mater. 52, 1900–1907 (2023). https://doi.org/10.1007/s11664-022-10154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10154-3

Keywords

Navigation