Skip to main content
Log in

Study of a Solar-Blind Photodetector Based on an IZTO/β-Ga2O3/ITO Schottky Diode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An InZnSnO2 (IZTO)/β-Ga2O3 solar blind Schottky barrier diode photodetector (PhD) exposed to 255 nm, 385 nm and 500 nm light wavelengths was simulated and compared with measurement. The measured dark photocurrent at reverse bias and responsivity were successfully reproduced by numerical simulation by considering several factors such as conduction mechanisms and material parameters. Further optimizations based on reducing trap densities and insertion of a 50-nm \({\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}\) passivation layer between IZTO and β-Ga2O3 are carried out. The effect of reducing bulk traps densities on the photocurrent, responsivity and time-dependent photoresponse (persistent conductivity) were studied. With decreasing traps densities, the photocurrent increased. Responsivity reached 0.04 A/W for low β-Ga2O3 trap densities. The decay time estimated for the lowest \({E}_{{T}}\; (0.74, 1.04\; \mathrm{eV})\) densities is \(\sim 0.05\; \mathrm{s}\) and is shorter at \(\sim 0.015\; \mathrm{s}\) for \({E}_{{T}}\; (0.55\; \mathrm{eV})\). This indicates that the shallowest traps had the dominant influence (\({E}_{{T}}=0.55\; \mathrm{eV}\)) on the persistent photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD). The insertion of a \({\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}\) passivation layer increases the photocurrent which is related to a recombination decrease and the photogenerated carrier increase, and hence the increase of the internal quantum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Toda, M. Hata, Y. Nomura, Y. Ueda, M. Sawada, and M. Shono, Operation at 700°C of 6H-SiC UV sensor fabricated using N+implantation. Jpn. J. Appl. Phys. 43, L27 (2003).

    Article  Google Scholar 

  2. M. Liao, Y. Koide, and J. Alvarez, Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact. Appl. Phys. Lett. 87, 22105 (2005).

    Article  Google Scholar 

  3. E. Muñoz, N-based photodetectors. Some materials issues. Phys. Status Solidi B 244, 2859 (2007).

    Article  Google Scholar 

  4. A. Soltani, H.A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, A. BenMoussa, B. Giordanengo, and J.-F. Hochedez, 193 nm Deep-ultraviolet solar-blind cubic boron nitride based photodetectors. Appl. Phys. Lett. 92, 53501 (2008).

    Article  Google Scholar 

  5. T. Wei, D. Tsai, P. Ravadgar, J. Ke, M. Tsai, D. Lien, C. Huang, R. Horng, and J. He, See-through Ga2O3 solar-blind photodetectors for use in harsh environments. IEEE J. Sel. Top. Quantum Electron. 20, 112 (2014).

    Article  Google Scholar 

  6. Y. Zou, Y. Zhang, Y. Hu, and H. Gu, Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review. Sensors 18, 2072 (2018).

    Article  Google Scholar 

  7. Y. Sui, H. Liang, W. Huo, Y. Wang, and Z. Mei, A flexible and transparent β-Ga2O3 solar-blind ultraviolet photodetector on mica. J. Phys. D Appl. Phys. 53, 504001 (2020).

    Article  CAS  Google Scholar 

  8. H. Kim, H.-J. Seok, J.H. Park, K.-B. Chung, S. Kyoung, H.-K. Kim, and Y.S. Rim, Fully transparent InZnSnO/β-Ga2O3/InSnO solar-blind photodetectors with high Schottky barrier height and low-defect interfaces. J. Alloys Compd. 890, 161931 (2021).

    Article  Google Scholar 

  9. D. Kaur and M. Kumar, A strategic review on gallium oxide based deep-ultraviolet photodetectors. Recent progress and future prospects. Adv. Opt. Mater. 9, 2002160 (2021).

    Article  CAS  Google Scholar 

  10. M. Labed, H. Kim, J.H. Park, M. Labed, A. Meftah, N. Sengouga, and Y.S. Rim, Nanomaterials 12, 1061 (2022).

    Article  CAS  Google Scholar 

  11. A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, W.J. Zhang, R. Dahal, J.Y. Lin, H.X. Jiang, H.A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J.C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J.F. Hochedez, Recent developments of wide-bandgap semiconductor based UV sensors. Diam. Relat. Mater. 18, 860 (2009).

    Article  CAS  Google Scholar 

  12. N. Kumar, K. Arora, and M. Kumar, High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes. J. Phys. D Appl. Phys. 52, 335103 (2019).

    Article  CAS  Google Scholar 

  13. J. Yu, C.X. Shan, J.S. Liu, X.W. Zhang, B.H. Li, and D.Z. Shen, MgZnO avalanche photodetectors realized in Schottky structures. Phys. Status Solidi RRL 7, 425 (2013).

    Article  CAS  Google Scholar 

  14. Z.G. Shao, D.J. Chen, H. Lu, R. Zhang, D.P. Cao, W.J. Luo, Y.D. Zheng, L. Li, and Z.H. Li, High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett. 35, 372 (2014).

    Article  CAS  Google Scholar 

  15. K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 46, L307 (2007).

    Article  CAS  Google Scholar 

  16. S. Salvatori, M.C. Rossi, F. Galluzzi, and E. Pace, Solar-blind UV-photodetector based on polycrystalline diamond films: basic design principle and comparison with experimental results. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 46, 105 (1997).

    Article  Google Scholar 

  17. Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem. C Mater. 6, 5727 (2018).

    Article  CAS  Google Scholar 

  18. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, and J.A. Simmons, Ultrawide-bandgap semiconductors. Research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018).

    Article  Google Scholar 

  19. L. Sang, M. Liao, and M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors. From thin film to one-dimensional nanostructures. Sensors 13, 10482–10518 (2013).

    Article  CAS  Google Scholar 

  20. X. Chen, F.-F. Ren, J. Ye, and S. Gu, Gallium oxide-based solar-blind ultraviolet photodetectors. Semicond. Sci. Technol. 35, 023001 (2020).

    Article  CAS  Google Scholar 

  21. X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, and D. Shen, Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl. Mater. Interfaces 8, 4185 (2016).

    Article  CAS  Google Scholar 

  22. L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P.T. Lai, X.-Z. Liu, and Y.-R. Li, Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics 4, 2203 (2017).

    Article  CAS  Google Scholar 

  23. S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates. Adv. Opt. Mater. 5, 1700454 (2017).

    Article  Google Scholar 

  24. S. Lany and A. Zunger, Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 98, 45501 (2007).

    Article  Google Scholar 

  25. X.Z. Liu, P. Guo, T. Sheng, L.X. Qian, W.L. Zhang, and Y.R. Li, β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector. Opt. Mater. 51, 203 (2016).

    Article  CAS  Google Scholar 

  26. C.A. Hoel, T.O. Mason, J.-F. Gaillard, and K.R. Poeppelmeier, Transparent conducting oxides in the ZnO-In2O3-SnO2 system. Chem. Mater. 22, 3569 (2010).

    Article  CAS  Google Scholar 

  27. M. Labed, J.Y. Min, J.Y. Hong, Y.-K. Jung, S. Kyoung, K.W. Kim, K. Heo, H. Kim, K. Choi, N. Sengouga, and Y.S. Rim, Interface engineering of β-Ga2O3 MOS-type Schottky barrier diode using an ultrathin HfO2 interlayer. Surf. Interfaces 33, 102267 (2022).

    Article  CAS  Google Scholar 

  28. M. Labed, J.H. Park, A. Meftah, N. Sengouga, J.Y. Hong, Y.-K. Jung, and Y.S. Rim, Low temperature modeling of Ni/β-Ga2O3 Schottky barrier diode interface. ACS Appl. Electron. Mater. 3, 3667 (2021).

    Article  CAS  Google Scholar 

  29. S. Sze and M. Lee, Semiconductor Devices Physics and Technology (New York: John Wiley & Sons, 2012).

    Google Scholar 

  30. M. Labed, N. Sengouga, A. Meftah, M. Labed, S. Kyoung, H. Kim, and Y.S. Rim, Leakage current modelling and optimization of β-Ga2O3 Schottky barrier diode with Ni contact under high reverse voltage. ECS J. Solid State Sci. Technol. 9, 125001 (2020).

    Article  CAS  Google Scholar 

  31. W. Li, D. Saraswat, Y. Long, K. Nomoto, D. Jena, and H.G. Xing, Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes. Appl. Phys. Lett. 116, 192101 (2020).

    Article  CAS  Google Scholar 

  32. R. Lingaparthi, K. Sasaki, Q.T. Thieu, A. Takatsuka, F. Otsuka, S. Yamakoshi, and A. Kuramata, Surface related tunneling leakage in β-Ga2O3 (001) vertical Schottky barrier diodes. Appl. Phys. Express 12, 074008 (2019).

    Article  Google Scholar 

  33. J.-H. Choi, C.-H. Cho, and H.-Y. Cha, Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate. Results Phys. 9, 1170 (2018).

    Article  Google Scholar 

  34. J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346 (1977).

    Article  CAS  Google Scholar 

  35. Z. Galazka, β -Ga2O3 for wide-bandgap electronics and optoelectronics. Semicond. Sci. Technol. 33, 113001 (2018).

    Article  Google Scholar 

  36. M. Labed, N. Sengouga, M. Labed, A. Meftah, S. Kyoung, H. Kim, and Y.S. Rim, Modeling a Ni/β-Ga2O3 Schottky barrier diode deposited by confined magnetic-field-based sputtering. J. Phys. D Appl. Phys. 54, 115102 (2021).

    Article  CAS  Google Scholar 

  37. A.Y. Polyakov, I.H. Lee, N.B. Smirnov, E.B. Yakimov, I.V. Shchemerov, A.V. Chernykh, A.I. Kochkova, A.A. Vasilev, P.H. Carey, F. Ren, D.J. Smith, and S.J. Pearton, Defects at the surface of β -Ga2O3 produced by Ar plasma exposure. APL Mater. 7, 061102 (2019).

    Article  Google Scholar 

  38. M. Labed, N. Sengouga, and Y.S. Rim, Control of Ni/β-Ga2O3 vertical Schottky diode output parameters at forward bias by insertion of a graphene layer. Nanomaterials 12, 827 (2022).

    Article  CAS  Google Scholar 

  39. L. Shi and S. Nihtianov, Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 12, 2453 (2012).

    Article  CAS  Google Scholar 

  40. Y. Qin, S. Long, H. Dong, Q. He, G. Jian, Y. Zhang, X. Hou, P. Tan, Z. Zhang, H. Lv, Q. Liu, and M. Liu, Review of deep ultraviolet photodetector based on gallium oxide. Chin. Phys. B 28, 18501 (2019).

    Article  Google Scholar 

  41. J.-W. Oh, C. Lee, and N. Kim, The effect of trap density on the space charge formation in polymeric photorefractive composites. J. Chem. Phys. 130, 134909 (2009).

    Article  Google Scholar 

  42. B.R. Tak, M.-M. Yang, M. Alexe, and R. Singh, Crystals 11, 1046 (2021).

    Article  CAS  Google Scholar 

  43. Z. Hu, Q. Feng, J. Zhang, F. Li, X. Li, Z. Feng, C. Zhang, and Y. Hao, Optical properties of (AlxGa1−x)2O3 on sapphire. Superlattices Microstruct. 114, 82 (2018).

    Article  CAS  Google Scholar 

  44. H. Peelaers, J.B. Varley, J.S. Speck, and C.G. Van de Walle, Structural and electronic properties of Ga2O3-Al2O3 alloys. Appl. Phys. Lett. 112, 242101 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Technology Innovation Program—(20016102, Development of 1.2kV Gallium oxide power semiconductor devices technology) funded by MOTIE, Korea.

Funding

This project was funded by Technology Innovation Program (Grant No. 20016102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nouredine Sengouga or You Seung Rim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherroun, R., Meftah, A., Labed, M. et al. Study of a Solar-Blind Photodetector Based on an IZTO/β-Ga2O3/ITO Schottky Diode. J. Electron. Mater. 52, 1448–1460 (2023). https://doi.org/10.1007/s11664-022-10081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10081-3

Keywords

Navigation