Skip to main content
Log in

Carbon Nanotubes/FeSiAl Hybrid Flake for Enhanced Microwave Absorption Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Developing high-performance microwave-absorbing microscale materials is still a challenge for practical anti-electromagnetic interference applications. Herein, a facile strategy for constructing carbon nanotubes (CNTs)/FeSiAl flake composites through in situ growth of CNTs on FeSiAl microscale flakes is developed. The Fe nanoparticles on the oxide surfaces of the FeSiAl flakes serve as catalyst for CNTs. The amount and size of CNTs is adjusted by the reaction temperature and time. Thanks to the optimal interface between CNTs and FeSiAl, the flake morphology of the FeSiAl alloy and the porous structure of dielectric CNTs, proper impedance match, improved microwave absorptivity, increased attenuation ability and enhanced loss capability result in good microwave-absorbing behavior, demonstrating an effective absorption bandwidth of 3.52 GHz (12–15.52 GHz) with 1.7 mm, and minimal reflection loss of −47.32 dB at 9.12 GHz and 2.4 mm. This work provides an effective method for designing and preparing high-performance microscale microwave absorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.X. Li, X.Y. Chen, Q. Wei, W.W. Liu, Y.H. Zhang, G.W. Qin, Z. Shi, and X.F. Zhang, Oxygen-Sulfur Co-Substitutional Fe@C Nanocapsules for Improving Microwave Absorption Properties. Sci. Bull. 65, 623 (2020).

    Article  CAS  Google Scholar 

  2. W. Tian, J.Y. Li, Y.F. Liu, R. Ali, Y. Guo, L.J. Deng, N. Mahmood, and X. Jian, Atomic-Scale Layer-by-Layer Deposition of FeSiAl@ZnO@Al2O3 Hybrid with Threshold Anti-Corrosion and Ultra-High Microwave Absorption Properties in Low-Frequency Bands. Nano-Micro Lett. 13, 161 (2021).

    Article  CAS  Google Scholar 

  3. X.G. Liu, L. Long, J.R. Shao, and M.L. Yu, Multi-Interface Nanocomposite for Band and Thin Microwave Absorption Application. Mater. Lett. 324, 132672 (2022).

    Article  CAS  Google Scholar 

  4. W.T. Yang, J.W. Sun, D.Y. Liu, W.W. Fu, Y.B. Dong, Y.Q. Fu, and Y.F. Zhu, Rational Design of Hierarchical Structure of carbon@polyaniline Composite with Enhanced Microwave Absorption Properties. Carbon 194, 114 (2022).

    Article  CAS  Google Scholar 

  5. Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, and R.C. Che, Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Adv. Mater. 34, 2107538 (2022).

    Article  CAS  Google Scholar 

  6. Z.H. Zhao, D. Lan, L.M. Zhang, and H.J. Wu, A Flexible, Mechanically Strong, and Anti-Corrosion Electromagnetic Wave Absorption Composites Film with Periodic Electroconductive Patterns. Adv. Funct. Mater. 32, 2111045 (2021).

    Article  Google Scholar 

  7. B.L. Wang, Y.G. Fu, J. Li, Q. Wu, X.Y. Wang, and T. Liu, Construction of Co@C Nanocapsules by One-Step Carbon Reduction of Single-Crystal Co3O4 Nanoparticles: Ultra-Wideband Microwave Absorber Verified via Coaxial and Arch Methods. Chem. Eng. J. 445, 136863 (2022).

    Article  CAS  Google Scholar 

  8. L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang, H.B. Zhang, X.P. Zhou, C.T. Liu, C.Y. Shen, and X.L. Xie, Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS Nano 15, 6622 (2021).

    Article  CAS  Google Scholar 

  9. X.Z. Zhang, Y. Guo, R. Ali, W. Tian, Y.F. Liu, L. Zhang, X. Wang, L.B. Zhang, L.J. Yin, H. Su, Y.X. Li, L.J. Deng, and X. Jian, Bifunctional Carbon-Encapsulated FeSiAl Hybrid Flakes for Enhanced Microwave Absorption Properties and Analysis of Corrosion Resistance. J. Alloys Compd. 828, 154079 (2020).

    Article  CAS  Google Scholar 

  10. L. Lutsev and S. Yakovlev, Spin Wave Spectroscopy and Microwave Losses in Granular Two-Phase Magnetic Nanocomposites. J. Appl. Phys. 101, 034320 (2007).

    Article  Google Scholar 

  11. J.R. Liu, M. Itoh, and K. Machida, Electromagnetic Wave Absorption Properties of α-Fe/Fe3B/Y2O3 Nanocomposites in Gigahertz Range. Appl. Phys. Lett. 83, 4017 (2003).

    Article  CAS  Google Scholar 

  12. S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, GHz Microwave Absorption of a Fine α-Fe Structure Produced by the Disproportionation of SmFe in Hydrogen. J. Alloys Compd. 330–332, 301 (2002).

    Article  Google Scholar 

  13. M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni Foam-Based Ultra-Broadband Electromagnetic Wave Absorber. Adv. Funct. Mater. 31, 2103436 (2021).

    Article  CAS  Google Scholar 

  14. C. Li, X.S. Qi, X. Gong, Q. Peng, Y.L. Chen, R. Xie, and W. Zhong, Magnetic-Dielectric Synergy and Interfacial Engineering to Design Yolk-Shell Structured CoNi@void@C and CoNi@void@C@MoS2 Nanocomposites with Tunable and Strong Wideband Microwave Absorption. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4468-2.

    Article  Google Scholar 

  15. C. Li, Z.H. Li, X.S. Qi, X. Gong, Y.L. Chen, Q. Peng, C.Y. Deng, T. Jing, and W. Zhong, A Generalizable Strategy for Constructing Ultralight Three-Dimensional Hierarchical Network Heterostructure as High-Efficient Microwave Absorber. J. Colloid Interface Sci. 605, 13 (2011).

    Article  Google Scholar 

  16. P.F. Yin, G.L. Wu, Y.T. Tang, S.J. Liu, Y. Zhang, G.X. Bu, J.W. Dai, Y.P. Zhao, and Y.W. Liu, Structure Regulation in N-doping Biconical Carbon Frame Decorated with CoFe2O4 and (Fe, Ni) for Broadband Microwave Absorption. Chem. Eng. J. 446, 136975 (2022).

    Article  CAS  Google Scholar 

  17. Q.M. Hu, R.L. Yang, S.D. Yang, W.B. Huang, Z.P. Zeng, and X.C. Gui, Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. ACS Appl. Mater. Interfaces 14, 10577 (2022).

    Article  CAS  Google Scholar 

  18. W.H. Huang, S. Wang, X.F. Yang, X.X. Zhang, Y.A. Zhang, K. Pei, and R.C. Che, Temperature Induced Transformation of Co@C Nanoparticle in 3D Hierarchical Core-Shell Nanofiber Network for Enhanced Electromagnetic Wave Absorption. Carbon 195, 44 (2022).

    Article  CAS  Google Scholar 

  19. Y.Y. Shi, S.S. Li, Z.M. Tian, X.S. Yang, Y.B. Dong, Y.F. Zhu, and Y.Q. Fu, Self-Assembled Lightweight Three-Dimensional Hierarchically Porous Ti3C2Tx MXene@polyaniline Hybrids for Superior Microwave Absorption. J. Alloys Compd. 892, 162194 (2021).

    Article  Google Scholar 

  20. Z.H. Yang, H.L. Lv, and R.B. Wu, Rational Construction of Graphene Oxide with MOF-Derived Porous NiFe@C Nanocubes for High-Performance Microwave Attenuation. Nano Res. 9, 3671 (2016).

    Article  CAS  Google Scholar 

  21. Z. Li, Z.Z. Li, H. Yang, H.X. Li, and X.G. Liu, Soft Magnetic Properties of Gas-Atomized FeSiAl Microparticles with a Triple Phosphoric Acid-Sodium Silicate-Silicone Resin Insulation Treatment. J. Electron. Mater. 51, 2142 (2022).

    Article  CAS  Google Scholar 

  22. H.X. Li, H. Yang, Z.Z. Li, Z. Li, and X.G. Liu, Multifunctional FeSiAl Soft Magnetic Composites with Inorganic-Organic Hybrid Insulating Layers for High Mechanical Strength, Low Core Loss and Comprehensive Anti-Corrosion. J. Electron. Mater. 51, 3418 (2022).

    Article  CAS  Google Scholar 

  23. Z. Li, J.J. Wang, and F. Zhao, Study on the Electromagnetic Properties and Microwave Absorbing Mechanism of Flaky FeSiAl Alloy Based on Annealing and Phosphate Coating. Mater. Res. Express 8, 066526 (2021).

    Article  CAS  Google Scholar 

  24. Y. Zhang, P. Wang, T. Ma, Y. Wang, L. Qiao, and T. Wang, High-Frequency Electromagnetic Properties of Soft Magnetic Nd2Co17 Micron Flakes Fractured Along c Crystal Plane with Natural Resonance Frequency Exceeding 10 GHz. Appl. Phys. Lett. 108, 092406 (2016).

    Article  Google Scholar 

  25. T.P. Ying, J. Zhang, X.G. Liu, J.H. Yu, J.Y. Yu, and X.F. Zhang, Corncob-Derived Hierarchical Porous Carbon/Ni Composites for Microwave Absorbing Application. J. Alloys Compd. 849, 156662 (2020).

    Article  CAS  Google Scholar 

  26. W. Tian, X.Z. Zhang, Y. Guo, C.H. Mu, P.H. Zhou, L.J. Yin, L.B. Zhang, L. Zhang, H.P. Lu, X. Jian, and L.J. Deng, Hybrid Silica-Carbon Bilayers Anchoring on FeSiAl Surface with Bifunctions of Enhanced Anti-Corrosion and Microwave Absorption. Carbon 173, 185 (2021).

    Article  CAS  Google Scholar 

  27. X.X. Yang, L.W. Wu, J. Hou, B.Y. Meng, R. Ali, Y.F. Liu, and X. Jian, Symmetrical Growth of Carbon Nanotube Arrays on FeSiAl Micro-Flake for Enhancement of Lithium-Ion Battery Capacity. Carbon 189, 93 (2022).

    Article  CAS  Google Scholar 

  28. X.G. Huang, J.W. Wei, Y.K. Zhang, B.B. Qian, Q. Jia, J. Liu, X.J. Zhao, and G.F. Shao, Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption. Nano-Micro Lett. 14, 107 (2022).

    Article  CAS  Google Scholar 

  29. X.G. Huang, G.Y. Yu, Y.K. Zhang, M.J. Zhang, and G.F. Shao, Design of Cellular Structure of Graphene Aerogels for Electromagnetic Wave Absorption. Chem. Eng. J. 426, 131894 (2021).

    Article  CAS  Google Scholar 

  30. M.L. Cheng, W.L. Ren, H.X. Li, X.G. Liu, S. Bandaru, J. Zhang, and X.F. Zhang, Multiscale Collaborative Coupling of Wood-Derived Porous Carbon Modified by Three-Dimensional Conductive Magnetic Networks for Electromagnetic Interference Shielding. Comp. Part B 224, 109169 (2021).

    Article  CAS  Google Scholar 

  31. N. Zhang, X. Wang, T. Liu, J.L. Xie, and L.J. Deng, Microwave Absorbing Performance Enhancement of Fe75Si15Al10 Composites by Selective Surface Oxidation. J. Appl. Phys. 122, 105103 (2017).

    Article  Google Scholar 

  32. Z. Li, H.Y. Li, T.P. Ying, X.G. Liu, H.X. Li, Y.Q. Shi, W.C. Chen, and X.F. Zhang, What is the Important Factor Affecting Microwave Absorption Performance in Corncob-Derived Carbon/Ni Composites? J. Phys. D 54, 365005 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang (No. GK 209907299001-002), Key Research and Development plan of Zhejiang Province (No. 2020C05014).

Author information

Authors and Affiliations

Authors

Contributions

HL: Methodology and Writing-original draft; HC: Paper revision and Simulation; HL: Methodology; LL: Conceptualization; XL: Editing and English correction, Supervision, financial support.

Corresponding author

Correspondence to Xianguo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cheng, H., Liu, H. et al. Carbon Nanotubes/FeSiAl Hybrid Flake for Enhanced Microwave Absorption Properties. J. Electron. Mater. 51, 6986–6994 (2022). https://doi.org/10.1007/s11664-022-09928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09928-6

Keywords

Navigation