Skip to main content
Log in

Device Modeling and Optimization for an Efficient Two-Terminal Perovskite Tandem Solar Cell

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we discuss a simulation model for a tandem device with MAPbSnI3 as a bottom subcell having bandgap of 1.2 eV and MACsPb(I0.6Br0.4) as a top subcell having bandgap of 1.8 eV. These perovskite material-based top and bottom cells are first examined under standalone condition. Simulation result shows the efficiency of standalone MAPbSnI3 and MACsPb(I0.6Br0.4) devices to be 15.34% and 12.74% respectively. These results are consistent with previously reported experimental findings. We have also analyzed the effect of defect density, perovskite thickness and contact work function on overall efficiency of the solar cell. It has been found that defect density in the perovskite layer should be smaller than 1013 cm−3 and the optimal work function for the front contact of the perovskite solar cell was found to be 5.44 eV, while for the back contact it is 4.22 eV for optimal performance of the solar cell. The matching of tandem stacks is investigated in terms of the equal short-circuit currents of subcells. This condition is met at perovskite thicknesses of 400 nm and 150 nm for MAPbSnI3 and MACsPb(I0.6Br0.4), respectively. Finally, to evaluate tandem solar cell performance, the top cell was operated under the standard AM 1.5 spectrum retaining perovskite thickness at 400 nm, while the bottom cell efficiency was calculated in a filtered spectrum. Improved efficiency of 20% is obtained for the MACsPb(I0.6Br0.4)/MAPbSnI3 tandem solar cell. The analysis and findings reported in this work give a potential route for tandem solar cell design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, Solar Cell Efficiency Tables (Version 58). Prog. Photovoltaics Res. Appl. 29, 657 (2021).

    Article  Google Scholar 

  2. W. Shockley and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  3. T. Leijtens, K.A. Bush, R. Prasanna, and M.D. McGehee, Opportunities and Challenges for Tandem Solar Cells Using Metal Halide Perovskite Semiconductors. Nat. Energy 3, 828 (2018).

    Article  CAS  Google Scholar 

  4. T. Ameri, N. Lia, and C.J. Brabec, Highly Efficient Organic Tandem Solar Cells: a Follow up Review. Energy Environ. Sci. 6, 2390 (2013).

    Article  CAS  Google Scholar 

  5. M. T. Islam, M. R. Jani, A. F. Islam, K. M. Shorowordi, S. Chowdhury, and S. S. Nishat, S. Ahmed, Investigation of CsSn0.5Ge0.5I3-on-Si Tandem Solar Device Utilizing SCAPS Simulation. IEEE Transactions on Electron Devices. 68, 618 (2021).

  6. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, and N.G. Park, 6.5% Efficient Perovskite Quantum-dot-sensitized Solar Cell. Nanoscale. 3, 4088 (2011).

    Article  CAS  Google Scholar 

  7. C.R. Kalaiselvi, N. Muthukumarasamy, D. Velauthapillai, M. Kang, and T.S. Senthil, Importance of Halide Perovskites for Next Generation Solar Cells–a Review. Mater. Lett. 219, 198 (2018).

    Article  CAS  Google Scholar 

  8. F. Jiang, T. Liu, B. Luo, J. Tong, F. Qin, S. Xiong, and Y. Zhou, A Two-terminal Perovskite/Perovskite Tandem Solar Cell. J. Mater. Chem. A. 4, 1208 (2016).

    Article  CAS  Google Scholar 

  9. M. Wang, J. Liu, C. Ma, Y. Wang, Li. Jianfeng, and J. Bian, Modular Perovskite Solar Cells with Cs0.05(FA0.85MA0.15)0.95Pb (I0.85Br0.15)3 Light-Harvesting Layer and Graphene Electrode. J. Elect. Mater. 51, 2381 (2022).

    Article  CAS  Google Scholar 

  10. A. Suzuki, M. Oe, and T. Oku, Fabrication and Characterization of Ni-, Co-, and Rb-Incorporated CH3NH3PbI3 Perovskite Solar Cells. J. Electron. Mater. 50, 1980 (2021).

    Article  CAS  Google Scholar 

  11. A. Suzuki, M. Kato, N. Ueoka, and T. Oku, Additive Effect of Formamidinium Chloride in Methylammonium Lead Halide Compound-based Perovskite Solar Cells. J. Electron. Mater. 48, 3900 (2019).

    Article  CAS  Google Scholar 

  12. Y. Xia, C. Zhao, P. Zhao, L. Mao, Y. Ding, D. Hong, Y. Tian, W. Yan, and Z. Jin, Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. J. Power Sourc. 494, 229781 (2021).

    Article  CAS  Google Scholar 

  13. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, and G. Zhu, All-inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 138, 15829 (2016).

    Article  CAS  Google Scholar 

  14. J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, and Z. Jin, CsPb0.9Sn0.1IBr 2 based All-inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. J. Am. Chem. Soc. 139, 14009 (2017).

    Article  CAS  Google Scholar 

  15. A. Rajagopal, Z. Yang, S.B. Jo, I.L. Braly, P.W. Liang, H.W. Hillhouse, and A.K.Y. Jen, Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage. Adv. Mater. 29, 1702140 (2017).

    Article  Google Scholar 

  16. D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song, C.R. Grice, and Y. Yan, Efficient Two-terminal All-perovskite Tandem Solar Cells Enabled by High-quality Low-bandgap Absorber Layers. Nat. Energy 3, 1093 (2018).

    Article  CAS  Google Scholar 

  17. T. Leijtens, R. Prasanna, K.A. Bush, G.E. Eperon, J.A. Raiford, A. Gold-Parker, and M.D. McGehee, Tin–lead Halide Perovskites with Improved Thermal and Air Stability for Efficient All-perovskite Tandem Solar Cells. Sustain. Energy Fuels. 2, 2450 (2018).

    Article  CAS  Google Scholar 

  18. G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.W. Wang, and H.J. Snaith, Perovskite-perovskite Tandem Photovoltaics with Optimized Band Gaps. Science 354, 861 (2016).

    Article  CAS  Google Scholar 

  19. A. DeVos, Detailed Balance Limit of the Efficiency of Tandem Solar Cells. J. Phys. D: Appl. Phys. 13, 839 (1980).

    Article  Google Scholar 

  20. N.N. Lal, T.P. White, and K.R. Catchpole, Optics and Light Trapping for Tandem Solar Cells on Silicon. IEEE Journal of Photovoltaics. 4, 1380 (2014).

    Article  Google Scholar 

  21. M.H. Futscher and B. Ehrler, Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Lett. 1, 863 (2016).

    Article  CAS  Google Scholar 

  22. J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey, W.H. Nguyen, and T. Buonassisi, A 2-terminal Perovskite/Silicon Multijunction Solar Cell Enabled by a Silicon Tunnel Junction. Appl. Phys. Lett. 106, 121105 (2015).

    Article  Google Scholar 

  23. F. Dávid, G.E. Lidón, P.D.R. Daniel, M. Cristina, W. Jérémie, and N. Bjoern, Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Adv. Energy Mater. 7, 1602121 (2017).

    Article  Google Scholar 

  24. J. Madan, R. Pandey. Shivani, and R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Solar energy. 197, 212 (2020).

    Article  CAS  Google Scholar 

  25. S.A. Moiz, A.N.M. Alahmadi, and A.J. Aljohani, Design of a Novel Lead-Free Perovskite Solar Cell for 17.83% Efficiency. IEEE Access. 9, 54254 (2021).

    Article  Google Scholar 

  26. S. Sharma, R. Pandey, J. Madan, and R. Sharma, Optimization of Mixed Sn and Pb Perovskite Solar Cell in Terms of Transport Layers and Absorber Layer Thickness Variation. Devices for Integrated Circuit (DevIC) (2021) p. 633.

  27. R.R. Raghvendra and S.K. Kumar, Pandey, Performance Evaluation and Material Parameter Perspective of Eco-friendly Highly Efficient CsSnGeI3 Perovskite Solar cell. Superlattices Microstruct. 135, 106273 (2019).

    Article  CAS  Google Scholar 

  28. R. Shubham, C. Pathak, and S.K. Pandey, Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell. IEEE Trans Electron Dev 67, 2837 (2020).

    Article  CAS  Google Scholar 

  29. R. Shukla, R.R. Kumar, and S.K. Pandey, Theoretical Study of Charge Carrier Lifetime and Recombination on the Performance of Eco-Friendly Perovskite Solar Cell. IEEE Trans. Electron Devices 68, 3446 (2021).

    Article  CAS  Google Scholar 

  30. S. Bhatt, R. Shukla, C. Pathak, and S.K. Pandey, Evaluation of Performance Constraints and Structural Optimization of a Core-Shell ZnO Nanorod Based Eco-friendly Perovskite Solar Cell. Sol. Energy 215, 473 (2021).

    Article  CAS  Google Scholar 

  31. Raghvendra, RR. Kumar, and SK. Pandey Performance Improvement and Defects Analysis in Pervoskite based Solar Cell. 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (2019) p. 1191.

  32. Y. Yang and J. You, Make Perovskite Solar Cells Stable. Nature 544, 155 (2017).

    Article  CAS  Google Scholar 

  33. Y.-M. Xie, Q. Yao, Z. Zeng, Q. Xue, T. Niu, R. Xia, Y. Cheng, F. Lin, S.-W. Tsang, and Y. Cao, Homogeneous Grain Boundary Passivation in Wide-bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with Over 21% Efficiency. Adv. Func. Mater. 32, 2112126 (2022).

    Article  CAS  Google Scholar 

  34. Y. Tong, A. Najar, Lu. Le Wang, M. Du Liu, J. Yang, J. Li, K. Wang, and S. Liu, Wide-Bandgap Organic-Inorganic Lead Halide Perovskite Solar Cells. Adv. Sci. 9, 2105085 (2022).

    Article  CAS  Google Scholar 

  35. M.D. Rasidul Islam, Y. Wu, K. Liu, Z. Wang, S. Qu, and Z. Wang, Recent Progress and Future Prospects for Light Management of All-Perovskite Tandem Solar Cells. Adv. Mater. Interf. 9, 2101144 (2022).

    Article  Google Scholar 

  36. Feng Wang, Sai Bai, Wolfgang Tress, Anders Hagfeldt, and Feng Gao, Defects engineering for high-performance perovskite solar cells. npj Flexible Electron. 2, 1 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Marc Burgelman (Department of Electronic and Information Sciences (ELIS) at the Ghent University, Belgium) for sharing the SCAPS 1D software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kumar Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghvendra, Kumar, R.R. & Pandey, S.K. Device Modeling and Optimization for an Efficient Two-Terminal Perovskite Tandem Solar Cell. J. Electron. Mater. 51, 6603–6613 (2022). https://doi.org/10.1007/s11664-022-09902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09902-2

Keywords

Navigation